

 Navigation

 	
 index

 	
 next |

 	beets 1.1.0 documentation

beets: the music geek’s media organizer

Welcome to the documentation for beets [http://beets.radbox.org/], the media library management system
for obsessive-compulsive music geeks.

If you’re new to beets, begin with the Getting Started guide. That guide
walks you through installing beets, setting it up how you like it, and starting
to build your music library.

Then you can get a more detailed look at beets’ features in the
Command-Line Interface and Configuration references. You might also
be interested in exploring the Plugins Included With Beets.

If you still need help, your can drop by the #beets IRC channel on Freenode,
email the author, or file a bug [https://github.com/sampsyo/beets/issues] in the issue tracker. Please let me know
where you think this documentation can be improved.

Contents

	Guides
	Getting Started

	Using the Auto-Tagger

	Upgrading from 1.0

	Reference
	Command-Line Interface

	Configuration

	Path Formats

	Queries

	Plugins
	Using Plugins

	Plugins Included With Beets

	Other Plugins

	Writing Plugins

	Changelog

 Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 	1.0b15

 	1.0b14

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	beets 1.1.0 documentation

Guides

This section contains a couple of walkthroughs that will help you get familiar
with beets. If you’re new to beets, you’ll want to begin with the Getting Started
guide.

	Getting Started

	Using the Auto-Tagger

	Upgrading from 1.0

 Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 	1.0b15

 	1.0b14

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	beets 1.1.0 documentation

 	Guides

Getting Started

Welcome to beets [http://beets.radbox.org/]! This guide will help you begin using it to make your music
collection better.

Installing

You will need Python. (Beets is written for Python 2.7 [http://www.python.org/download/releases/2.7.2/], but it works with
2.6 as well. Python 3.x is not yet supported.)

	Mac OS X v10.7 (Lion) and 10.8 (Mountain Lion) include Python 2.7 out of
the box; Snow Leopard ships with Python 2.6.

	On Debian or Ubuntu, depending on the version, beets is available as an
official package (Debian details [http://packages.qa.debian.org/b/beets.html], Ubuntu details [https://launchpad.net/ubuntu/+source/beets]), so try typing:
apt-get install beets. To build from source, you can get everything you
need by running: apt-get install python-dev python-setuptools python-pip

	For Arch Linux, try getting beets from AUR [http://aur.archlinux.org/packages.php?ID=39577]. (There’s also a
bleeding-edge dev package [http://aur.archlinux.org/packages.php?ID=48617], which will probably set your computer on fire.)

	For Gentoo Linux, beets is in Portage as media-sound/beets. Just run
emerge beets to install. There are several USE flags available for
optional plugin dependencies.

	On FreeBSD, there’s a beets port [http://portsmon.freebsd.org/portoverview.py?category=audio&portname=beets] at audio/beets.

If you have pip [http://pip.openplans.org/], just say pip install beets (you might need sudo in
front of that). On Arch, you’ll need to use pip2 instead of pip.

To install without pip, download beets from its PyPI page [http://pypi.python.org/pypi/beets#downloads] and run python
setup.py install in the directory therein.

The best way to upgrade beets to a new version is by running pip install -U
beets. You may want to follow @b33ts [http://twitter.com/b33ts] on Twitter to hear about progress on
new versions.

Installing on Windows

Installing beets on Windows can be tricky. Following these steps might help you
get it right:

	If you don’t have it, install Python [http://python.org/download/] (you want Python 2.7).

	Install Setuptools [http://pypi.python.org/pypi/setuptools] from PyPI. To do this, scroll to the bottom of that
page and download the Windows installer (.exe, not .egg) for your
Python version (for example: setuptools-0.6c11.win32-py2.7.exe).

	If you haven’t done so already, set your PATH environment variable to
include Python and its scripts. To do so, you have to get the “Properties”
window for “My Computer”, then choose the “Advanced” tab, then hit the
“Environment Variables” button, and then look for the PATH variable in
the table. Add the following to the end of the variable’s value:
;C:\Python27;C:\Python27\Scripts.

	Open a command prompt and install pip by running: easy_install pip

	Now install beets by running: pip install beets

	You’re all set! Type beet at the command prompt to make sure everything’s
in order.

Windows users may also want to install a context menu item for importing files
into beets. Just download and open beets.reg [https://github.com/sampsyo/beets/blob/master/extra/beets.reg] to add the necessary keys to the
registry. You can then right-click a directory and choose “Import with beets”.
If Python is in a nonstandard location on your system, you may have to edit the
command path manually.

Because I don’t use Windows myself, I may have missed something. If you have
trouble or you have more detail to contribute here, please let me know.

Configuring

You’ll want to set a few basic options before you start using beets. The
configuration is stored in a text file: on Unix-like OSes, the config file is
at ~/.config/beets/config.yaml; on Windows, it’s at
%APPDATA%\beets\config.yaml. Create and edit the appropriate file with your
favorite text editor. (You may need to create the enclosing directories also.)
The file will start out empty, but here’s good place to start:

directory: ~/music
library: ~/data/musiclibrary.blb

Change that first path to a directory where you’d like to keep your music. Then,
for library, choose a good place to keep a database file that keeps an index
of your music.

The default configuration assumes you want to start a new organized music folder
(that directory above) and that you’ll copy cleaned-up music into that
empty folder using beets’ import command (see below). But you can configure
beets to behave many other ways:

	Start with a new empty directory, but move new music in instead of copying
it (saving disk space). Put this in your config file:

import:
 move: yes

	Keep your current directory structure; importing should never move or copy
files but instead just correct the tags on music. Put the line copy: no
under the import: heading in your config file to disable any copying or
renaming. Make sure to point directory at the place where your music is
currently stored.

	Keep your current directory structure and do not correct files’ tags: leave
files completely unmodified on your disk. (Corrected tags will still be stored
in beets’ database, and you can use them to do renaming or tag changes later.)
Put this in your config file:

import:
 copy: no
 write: no

to disable renaming and tag-writing.

There are approximately six million other configuration options you can set
here, including the directory and file naming scheme. See
Configuration for a full reference.

Importing Your Library

There are two good ways to bring your existing library into beets. You can
either: (a) quickly bring all your files with all their current metadata into
beets’ database, or (b) use beets’ highly-refined autotagger to find canonical
metadata for every album you import. Option (a) is really fast, but option (b)
makes sure all your songs’ tags are exactly right from the get-go. The point
about speed bears repeating: using the autotagger on a large library can take a
very long time, and it’s an interactive process. So set aside a good chunk of
time if you’re going to go that route. (I’m working on improving the
autotagger’s performance and automation.) For more information on the
interactive tagging process, see Using the Auto-Tagger.

If you’ve got time and want to tag all your music right once and for all, do
this:

$ beet import /path/to/my/music

(Note that by default, this command will copy music into the directory you
specified above. If you want to use your current directory structure, set the
import.copy config option.) To take the fast,
un-autotagged path, just say:

$ beet import -A /my/huge/mp3/library

Note that you just need to add -A for “don’t autotag”.

Adding More Music

If you’ve ripped or... otherwise obtained some new music, you can add it with
the beet import command, the same way you imported your library. Like so:

$ beet import ~/some_great_album

This will attempt to autotag the new album (interactively) and add it to your
library. There are, of course, more options for this command—just type beet
help import to see what’s available.

Seeing Your Music

If you want to query your music library, the beet list (shortened to beet
ls) command is for you. You give it a query string,
which is formatted something like a Google search, and it gives you a list of
songs. Thus:

$ beet ls the magnetic fields
The Magnetic Fields - Distortion - Three-Way
The Magnetic Fields - Distortion - California Girls
The Magnetic Fields - Distortion - Old Fools
$ beet ls hissing gronlandic
of Montreal - Hissing Fauna, Are You the Destroyer? - Gronlandic Edit
$ beet ls bird
The Knife - The Knife - Bird
The Mae Shi - Terrorbird - Revelation Six
$ beet ls album:bird
The Mae Shi - Terrorbird - Revelation Six

As you can see, search terms by default search all attributes of songs. (They’re
also implicitly joined by ANDs: a track must match all criteria in order to
match the query.) To narrow a search term to a particular metadata field, just
put the field before the term, separated by a : character. So album:bird
only looks for bird in the “album” field of your songs. (Need to know more?
Queries will answer all your questions.)

The beet list command has another useful option worth mentioning, -a,
which searches for albums instead of songs:

$ beet ls -a forever
Bon Iver - For Emma, Forever Ago
Freezepop - Freezepop Forever

So handy!

Beets also has a stats command, just in case you want to see how much music
you have:

$ beet stats
Tracks: 13019
Total time: 4.9 weeks
Total size: 71.1 GB
Artists: 548
Albums: 1094

Playing Music

Beets is primarily intended as a music organizer, not a player. It’s designed to
be used in conjunction with other players (consider Decibel [http://decibel.silent-blade.org/] or cmus [http://cmus.sourceforge.net/];
there’s even a cmus plugin for beets). However, it does
include a simple music player—it doesn’t have a ton of features, but it gets
the job done.

The player, called BPD, is a clone of an excellent music player called MPD [http://mpd.wikia.com/].
Like MPD, it runs as a daemon (i.e., without a user interface). Another program,
called an MPD client, controls the player and provides the user with an
interface. You’ll need to enable the BPD plugin before you can use it. Check out
BPD Plugin.

You can, of course, use the bona fide MPD server with your beets library. MPD is
a great player and has more features than BPD. BPD just provides a convenient,
built-in player that integrates tightly with your beets database.

Keep Playing

The Command-Line Interface page has more detailed description of all of beets’
functionality. (Like deleting music! That’s important.) Start exploring!

Also, check out Plugins Included With Beets as well as Other Plugins. The
real power of beets is in its extensibility—with plugins, beets can do almost
anything for your music collection.

You can always get help using the beet help command. The plain beet help
command lists all the available commands; then, for example, beet help
import gives more specific help about the import command.

Please let me know what you think of beets via email or Twitter [http://twitter.com/b33ts].

 Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 	1.0b15

 	1.0b14

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	beets 1.1.0 documentation

 	Guides

Using the Auto-Tagger

Beets’ automatic metadata correcter is sophisticated but complicated and
cryptic. This is a guide to help you through its myriad inputs and options.

An Apology and a Brief Interlude

I would like to sincerely apologize that the autotagger in beets is so fussy. It
asks you a lot of complicated questions, insecurely asking that you verify
nearly every assumption it makes. This means importing and correcting the tags
for a large library can be an endless, tedious process. I’m sorry for this.

Maybe it will help to think of it as a tradeoff. By carefully examining every
album you own, you get to become more familiar with your library, its extent,
its variation, and its quirks. People used to spend hours lovingly sorting and
resorting their shelves of LPs. In the iTunes age, many of us toss our music
into a heap and forget about it. This is great for some people. But there’s
value in intimate, complete familiarity with your collection. So instead of a
chore, try thinking of correcting tags as quality time with your music
collection. That’s what I do.

One practical piece of advice: because beets’ importer runs in multiple threads,
it queues up work in the background while it’s waiting for you to respond. So if
you find yourself waiting for beets for a few seconds between every question it
asks you, try walking away from the computer for a while, making some tea, and
coming back. Beets will have a chance to catch up with you and will ask you
questions much more quickly.

Back to the guide.

Overview

Beets’ tagger is invoked using the beet import command. Point it at a
directory and it imports the files into your library, tagging them as it goes
(unless you pass --noautotag, of course). There are several assumptions
beets currently makes about the music you import. In time, we’d like to remove
all of these limitations.

	Your music should be organized by album into directories. That is, the tagger
assumes that each album is in a single directory. These directories can be
arbitrarily deep (like music/2010/hiphop/seattle/freshespresso/glamour),
but any directory with music files in it is interpreted as a separate album.
This means that your flat directory of six thousand uncategorized MP3s won’t
currently be autotaggable. (This will change eventually.)

There is one exception to this rule: directories that look like separate parts
of a multi-disc album are tagged together as a single release. If two
adjacent albums have a common prefix, followed by “disc” or “CD” and then a
number, they are tagged together.

	The music may have bad tags, but it’s not completely untagged. (This is
actually not a hard-and-fast rule: using the E option described below, it’s
entirely possible to search for a release to tag a given album.) This is
because beets by default infers tags based on existing metadata. The
Acoustid plugin extends the autotagger to use
acoustic fingerprinting to find information for arbitrary audio. Install that
plugin if you’re willing to spend a little more CPU power to get tags for
unidentified albums.

	Currently, MP3, AAC, FLAC, Ogg Vorbis, Monkey’s Audio, WavPack, Musepack, and
Windows Media files are supported. (Do you use some other format? Let me
know!)

Now that that’s out of the way, let’s tag some music.

Options

To import music, just say beet import MUSICDIR. There are, of course, a few
command-line options you should know:

	beet import -A: don’t try to autotag anything; just import files (this
goes much faster than with autotagging enabled)

	beet import -W: when autotagging, don’t write new tags to the files
themselves (just keep the new metadata in beets’ database)

	beet import -C: don’t copy imported files to your music directory; leave
them where they are

	beet import -l LOGFILE: write a message to LOGFILE every time you skip
an album or choose to take its tags “as-is” (see below) or the album is
skipped as a duplicate; this lets you come back later and reexamine albums
that weren’t tagged successfully

	beet import -q: quiet mode. Never prompt for input and, instead,
conservatively skip any albums that need your opinion. The -ql combination
is recommended.

	beet import -t: timid mode, which is sort of the opposite of “quiet.” The
importer will ask your permission for everything it does, confirming even very
good matches with a prompt.

	beet import -p: automatically resume an interrupted import. The importer
keeps track of imports that don’t finish completely (either due to a crash or
because you stop them halfway through) and, by default, prompts you to decide
whether to resume them. The -p flag automatically says “yes” to this
question. Relatedly, -P flag automatically says “no.”

	beet import -s: run in singleton mode, tagging individual tracks instead
of whole albums at a time. See the “as Tracks” choice below. This means you
can use beet import -AC to quickly add a bunch of files to your library
without doing anything to them.

Similarity

So you import an album into your beets library. It goes like this:

$ beet imp witchinghour
Tagging: Ladytron - Witching Hour
(Similarity: 98.4%)
* Last One Standing -> The Last One Standing
* Beauty -> Beauty*2
* White Light Generation -> Whitelightgenerator
* All the Way -> All the Way...

Here, beets gives you a preview of the album match it has found. It shows you
which track titles will be changed if the match is applied. In this case, beets
has found a match and thinks it’s a good enough match to proceed without asking
your permission. It has reported the similarity for the match it’s found.
Similarity is a measure of how well-matched beets thinks a tagging option is.
100% similarity means a perfect match 0% indicates a truly horrible match.

In this case, beets has proceeded automatically because it found an option with
very high similarity (98.4%). But, as you’ll notice, if the similarity isn’t
quite so high, beets will ask you to confirm changes. This is because beets
can’t be very confident about more dissimilar matches, and you (as a human) are
better at making the call than a computer. So it occasionally asks for help.

Choices

When beets needs your input about a match, it says something like this:

Tagging: Beirut - Lon Gisland
(Similarity: 94.4%)
* Scenic World (Second Version) -> Scenic World
[A]pply, More candidates, Skip, Use as-is, as Tracks, Enter search, or aBort?

When beets asks you this question, it wants you to enter one of the capital letters: A, M, S, U, T, E, or B. That is, you can choose one of the following:

	A: Apply the suggested changes shown and move on.

	M: Show more options. (See the Candidates section, below.)

	S: Skip this album entirely and move on to the next one.

	U: Import the album without changing any tags. This is a good option for
albums that aren’t in the MusicBrainz database, like your friend’s operatic
faux-goth solo record that’s only on two CD-Rs in the universe.

	T: Import the directory as singleton tracks, not as an album. Choose this
if the tracks don’t form a real release—you just have one or more loner
tracks that aren’t a full album. This will temporarily flip the tagger into
singleton mode, which attempts to match each track individually.

	E: Enter an artist and album to use as a search in the database. Use this
option if beets hasn’t found any good options because the album is mistagged
or untagged.

	B: Cancel this import task altogether. No further albums will be tagged;
beets shuts down immediately. The next time you attempt to import the same
directory, though, beets will ask you if you want to resume tagging where you
left off.

Note that the option with [B]rackets is the default—so if you want to
apply the changes, you can just hit return without entering anything.

Candidates

If you choose the M option, or if beets isn’t very confident about any of the
choices it found, it will present you with a list of choices (called
candidates), like so:

Finding tags for "Panther - Panther".
Candidates:
1. Panther - Yourself (66.8%)
2. Tav Falco's Panther Burns - Return of the Blue Panther (30.4%)
selection (default 1), Skip, Use as-is, or Enter search, or aBort?

Here, you have many of the same options as before, but you can also enter a
number to choose one of the options that beets has found. Don’t worry about
guessing—beets will show you the proposed changes and ask you to confirm
them, just like the earlier example. As the prompt suggests, you can just hit
return to select the first candidate.

Duplicates

If beets finds an album or item in your library that seems to be the same as the
one you’re importing, you may see a prompt like this:

This album is already in the library!
[S]kip new, Keep both, Remove old?

Beets wants to keep you safe from duplicates, which can be a real pain, so you
have three choices in this situation. You can skip importing the new music,
choosing to keep the stuff you already have in your library; you can keep both
the old and the new music; or you can remove the existing music and choose the
new stuff. If you choose that last “trump” option, any duplicates will be
removed from your library database—and, if the corresponding files are located
inside of your beets library directory, the files themselves will be deleted as
well.

If you choose to keep two identically-named albums, beets can avoid storing both
in the same directory. See Album Disambiguation for details.

Fingerprinting

You may have noticed by now that beets’ autotagger works pretty well for most
files, but can get confused when files don’t have any metadata (or have wildly
incorrect metadata). In this case, you need acoustic fingerprinting, a
technology that identifies songs from the audio itself. With fingerprinting,
beets can autotag files that have very bad or missing tags. The “chroma”
plugin, distributed with beets, uses the Chromaprint [http://acoustid.org/chromaprint] open-source fingerprinting technology, but it’s disabled by default. That’s because
it’s sort of tricky to install. See the Chromaprint/Acoustid Plugin page for a guide
to getting it set up.

Before you jump into acoustic fingerprinting with both feet, though, give beets
a try without it. You may be surprised at how well metadata-based matching
works.

Album Art, Lyrics, Genres and Such

Aside from the basic stuff, beets can optionally fetch more specialized
metadata. As a rule, plugins are responsible for getting information that
doesn’t come directly from the MusicBrainz database. This includes album
cover art, song lyrics, and
musical genres. Check out the list of plugins to pick and choose the data you want.

Missing Albums?

If you’re having trouble tagging a particular album with beets, check to make
sure the album is present in the MusicBrainz database [http://musicbrainz.org/]. You can search on
their site to make sure it’s cataloged there. If not, anyone can edit
MusicBrainz—so consider adding the data yourself.

If you think beets is ignoring an album that’s listed in MusicBrainz, please
file a bug report [https://github.com/sampsyo/beets/issues].

I Hope That Makes Sense

I haven’t made the process clear, please drop me an email and I’ll try to
improve this guide.

 Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 	1.0b15

 	1.0b14

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	beets 1.1.0 documentation

 	Guides

Upgrading from 1.0

Prior to version 1.1, beets used a completely different system for
configuration. The config file was in “INI” syntax instead of YAML [http://en.wikipedia.org/wiki/YAML] and the
various files used by beets were (messily) stored in $HOME instead of a
centralized beets directory. If you’re upgrading from version 1.0 or earlier,
your configuration syntax (and paths) need to be updated to work with the
latest version.

Fortunately, this should require very little effort on your part. When you
first run beets 1.1, it will look for an old-style .beetsconfig to
migrate. If it finds one (and there is no new-style
config.yaml yet), beets will warn you and then
transparently convert one to the other. At this point, you’ll likely want to:

	Look at your new configuration file (find out where in
Configuration) to make sure everything was migrated correctly.

	Remove your old configuration file (~/.beetsconfig on Unix;
%APPDATA%\beetsconfig.ini on Windows) to avoid confusion in the future.

You might be interested in the Changelog to see which configuration
option names have changed.

What’s Migrated

Automatic migration is most important for the configuration file, since its
syntax is completely different, but two other files are also moved. This is to
consolidate everything beets needs in a single directory instead of leaving it
messily strewn about in your home directory.

First, the library database file was at ~/.beetsmusic.blb on Unix and
%APPDATA%\beetsmusic.blb on Windows. This file will be copied to
library.db in the same directory as your new configuration file. Finally,
the runtime state file, which keeps track of interrupted and incremental
imports, was previously known as ~/.beetsstate; it is copied to a file
called state.pickle.

Feel free to remove the old files once they’ve been copied to their new homes.

Manual Migration

If you find you need to re-run the migration process, just type beet
migrate in your shell. This will migrate the configuration file, the
database, and the runtime state file all over again. Unlike automatic
migration, no step is suppressed if the file already exists. If you already
have a config.yaml, for example, it will be renamed to make room for the
newly migrated configuration.

 Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 	1.0b15

 	1.0b14

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	beets 1.1.0 documentation

Reference

This section contains reference materials for various parts of beets. To get
started with beets as a new user, though, you may want to read the
Getting Started guide first.

	Command-Line Interface
	Commands

	Global Flags

	Configuration
	Global Options

	Importer Options

	MusicBrainz Options

	Autotagger Matching Options

	Path Format Configuration

	Example

	Path Formats
	A Note About Artists

	Functions

	Album Disambiguation

	Syntax Details

	Available Values

	Queries
	Keyword

	Combining Keywords

	Specific Fields

	Phrases

	Regular Expressions

	Path Queries

 Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 	1.0b15

 	1.0b14

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	beets 1.1.0 documentation

 	Reference

Command-Line Interface

beet is the command-line interface to beets.

You invoke beets by specifying a command, like so:

beet COMMAND [ARGS...]

The rest of this document describes the available commands. If you ever need
a quick list of what’s available, just type beet help or beet help
COMMAND or help with a specific command.

Commands

import

beet import [-CWAPRqst] [-l LOGPATH] DIR...
beet import [options] -L QUERY

Add music to your library, attempting to get correct tags for it from
MusicBrainz.

Point the command at a directory full of music. The directory can be a single
album or a directory whose leaf subdirectories are albums (the latter case is
true of typical Artist/Album organizations and many people’s “downloads”
folders). The music will be copied to a configurable directory structure (see
below) and added to a library database (see below). The command is interactive
and will try to get you to verify MusicBrainz tags that it thinks are suspect.
(This means that importing a large amount of music is therefore very tedious
right now; this is something we need to work on. Read the
autotagging guide if you need help.)

	By default, the command copies files your the library directory and
updates the ID3 tags on your music. If you’d like to leave your music
files untouched, try the -C (don’t copy) and -W (don’t write tags)
options. You can also disable this behavior by default in the
configuration file (below).

	Also, you can disable the autotagging behavior entirely using -A
(don’t autotag)—then your music will be imported with its existing
metadata.

	During a long tagging import, it can be useful to keep track of albums
that weren’t tagged successfully—either because they’re not in the
MusicBrainz database or because something’s wrong with the files. Use the
-l option to specify a filename to log every time you skip and album
or import it “as-is” or an album gets skipped as a duplicate.

	Relatedly, the -q (quiet) option can help with large imports by
autotagging without ever bothering to ask for user input. Whenever the
normal autotagger mode would ask for confirmation, the quiet mode
pessimistically skips the album. The quiet mode also disables the tagger’s
ability to resume interrupted imports.

	Speaking of resuming interrupted imports, the tagger will prompt you if it
seems like the last import of the directory was interrupted (by you or by
a crash). If you want to skip this prompt, you can say “yes” automatically
by providing -p or “no” using -P. The resuming feature can be
disabled by default using a configuration option (see below).

	If you want to import only the new stuff from a directory, use the
-i
option to run an incremental import. With this flag, beets will keep
track of every directory it ever imports and avoid importing them again.
This is useful if you have an “incoming” directory that you periodically
add things to.
To get this to work correctly, you’ll need to use an incremental import every
time you run an import on the directory in question—including the first
time, when no subdirectories will be skipped. So consider enabling the
incremental configuration option.

	By default, beets will proceed without asking if it finds a very close
metadata match. To disable this and have the importer as you every time,
use the -t (for timid) option.

	The importer typically works in a whole-album-at-a-time mode. If you
instead want to import individual, non-album tracks, use the singleton
mode by supplying the -s option.

	If you have an album that’s split across several directories under a common
top directory, use the --flat option. This takes all the music files
under the directory (recursively) and treats them as a single large album
instead of as one album per directory. This can help with your more stubborn
multi-disc albums.

Reimporting

The import command can also be used to “reimport” music that you’ve
already added to your library. This is useful when you change your mind
about some selections you made during the initial import, or if you prefer
to import everything “as-is” and then correct tags later.

Just point the beet import command at a directory of files that are
already catalogged in your library. Beets will automatically detect this
situation and avoid duplicating any items. In this situation, the “copy
files” option (-c/-C on the command line or copy in the
config file) has slightly different behavior: it causes files to be moved,
rather than duplicated, if they’re already in your library. (The same is
true, of course, if move is enabled.) That is, your directory
structure will be updated to reflect the new tags if copying is enabled; you
never end up with two copies of the file.

The -L (--library) flag is also useful for retagging. Instead of
listing paths you want to import on the command line, specify a query
string that matches items from your library. In this case, the
-s (singleton) flag controls whether the query matches individual items
or full albums. If you want to retag your whole library, just supply a null
query, which matches everything: beet import -L

Note that, if you just want to update your files’ tags according to
changes in the MusicBrainz database, the MBSync Plugin is a
better choice. Reimporting uses the full matching machinery to guess
metadata matches; mbsync just relies on MusicBrainz IDs.

list

beet list [-apf] QUERY

Queries the database for music.

Want to search for “Gronlandic Edit” by of Montreal? Try beet list
gronlandic. Maybe you want to see everything released in 2009 with
“vegetables” in the title? Try beet list year:2009 title:vegetables. (Read
more in Queries.)

You can use the -a switch to search for albums instead of individual items.
In this case, the queries you use are restricted to album-level fields: for
example, you can search for year:1969 but query parts for item-level fields
like title:foo will be ignored. Remember that artist is an item-level
field; albumartist is the corresponding album field.

The -p option makes beets print out filenames of matched items, which might
be useful for piping into other Unix commands (such as xargs [http://en.wikipedia.org/wiki/Xargs]). Similarly, the
-f option lets you specify a specific format with which to print every album
or track. This uses the same template syntax as beets’ path formats. For example, the command beet ls -af '$album: $tracktotal'
beatles prints out the number of tracks on each Beatles album. In Unix shells,
remember to enclose the template argument in single quotes to avoid environment
variable expansion.

remove

beet remove [-ad] QUERY

Remove music from your library.

This command uses the same query syntax as the list command.
You’ll be shown a list of the files that will be removed and asked to confirm.
By default, this just removes entries from the library database; it doesn’t
touch the files on disk. To actually delete the files, use beet remove -d.

modify

beet modify [-MWay] QUERY FIELD=VALUE...

Change the metadata for items or albums in the database.

Supply a query matching the things you want to change and a
series of field=value pairs. For example, beet modify genius of love
artist="Tom Tom Club" will change the artist for the track “Genius of Love.”
The -a switch operates on albums instead of individual tracks. Items will
automatically be moved around when necessary if they’re in your library
directory, but you can disable that with -M. Tags will be written to the
files according to the settings you have for imports, but these can be
overridden with -w (write tags, the default) and -W (don’t write tags).
Finally, this command politely asks for your permission before making any
changes, but you can skip that prompt with the -y switch.

move

beet move [-ca] [-d DIR] QUERY

Move or copy items in your library.

This command, by default, acts as a library consolidator: items matching the
query are renamed into your library directory structure. By specifying a
destination directory with -d manually, you can move items matching a query
anywhere in your filesystem. The -c option copies files instead of moving
them. As with other commands, the -a option matches albums instead of items.

update

beet update [-aM] QUERY

Update the library (and, optionally, move files) to reflect out-of-band metadata
changes and file deletions.

This will scan all the matched files and read their tags, populating the
database with the new values. By default, files will be renamed according to
their new metadata; disable this with -M.

To perform a “dry run” an update, just use the -p (for “pretend”) flag. This
will show you all the proposed changes but won’t actually change anything on
disk.

stats

beet stats [-e] [QUERY]

Show some statistics on your entire library (if you don’t provide a
query) or the matched items (if you do).

The -e (--exact) option makes the calculation of total file size more
accurate but slower.

fields

beet fields

Show the item and album metadata fields available for use in Queries and
Path Formats.

Global Flags

Beets has a few “global” flags that affect all commands. These must appear
between the executable name (beet) and the command: for example, beet -v
import

	-l LIBPATH: specify the library database file to use.

	-d DIRECTORY: specify the library root directory.

	-v: verbose mode; prints out a deluge of debugging information. Please use
this flag when reporting bugs.

 Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 	1.0b15

 	1.0b14

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	beets 1.1.0 documentation

 	Reference

Configuration

Beets has an extensive configuration system that lets you customize nearly
every aspect of its operation. To configure beets, you’ll edit a file called
config.yaml. The location of this file depends on your OS:

	On Unix-like OSes (including OS X), you want ~/.config/beets/config.yaml.

	On Windows, use %APPDATA%\beets\config.yaml. This is usually in a
directory like C:\Users\You\AppData\Roaming.

	On OS X, you can also use ~/Library/Application Support/beets/config.yaml
if you prefer that over the Unix-like ~/.config.

	If you prefer a different location, set the BEETSDIR environment variable
to a path; beets will then look for a config.yaml in that directory.

The config file uses YAML [http://yaml.org/] syntax. You can use the full power of YAML, but
most configuration options are simple key/value pairs. This means your config
file will look like this:

option: value
another_option: foo
bigger_option:
 key: value
 foo: bar

In YAML, you will need to use spaces (not tabs!) to indent some lines. If you
have questions about more sophisticated syntax, take a look at the YAML [http://yaml.org/]
documentation.

Global Options

These options control beets’ global operation.

library

Path to the beets library file. By default, beets will use a file called
library.db alongside your configuration file.

directory

The directory to which files will be copied/moved when adding them to the
library. Defaults to a folder called Music in your home directory.

plugins

A space-separated list of plugin module names to load. For instance, beets
includes the BPD plugin for playing music.

pluginpath

Directories to search for plugins. These paths are just added to sys.path
before the plugins are loaded. (The plugins still have to be contained in a
beetsplug namespace package.) This can either be a single string or a list
of strings—so, if you have multiple paths, format them as a YAML list like
so:

pluginpath:
 - /path/one
 - /path/two

ignore

A list of glob patterns specifying file and directory names to be ignored when
importing. By default, this consists of .*, *~, and System Volume
Information (i.e., beets ignores Unix-style hidden files, backup files, and
a directory that appears at the root of some Windows filesystems).

replace

A set of regular expression/replacement pairs to be applied to all filenames
created by beets. Typically, these replacements are used to avoid confusing
problems or errors with the filesystem (for example, leading dots, which hide
files on Unix, and trailing whitespace, which is illegal on Windows). To
override these substitutions, specify a mapping from regular expression to
replacement strings. For example, [xy]: z will make beets replace all
instances of the characters x or y with the character z.

If you do change this value, be certain that you include at least enough
substitutions to avoid causing errors on your operating system. Here are
the default substitutions used by beets, which are sufficient to avoid
unexpected behavior on all popular platforms:

replace:
 '[\\/]': _
 '^\.': _
 '[\x00-\x1f]': _
 '[<>:"\?*\|]': _
 '\.$': _
 '\s+$': ''

These substitutions remove forward and back slashes, leading dots, and
control characters—all of which is a good idea on any OS. The fourth line
removes the Windows “reserved characters” (useful even on Unix for for
compatibility with Windows-influenced network filesystems like Samba).
Trailing dots and trailing whitespace, which can cause problems on Windows
clients, are also removed.

art_filename

When importing album art, the name of the file (without extension) where the
cover art image should be placed. This is a template string, so you can use any
of the syntax available to Path Formats. Defaults to cover
(i.e., images will be named cover.jpg or cover.png and placed in the
album’s directory).

threaded

Either yes or no, indicating whether the autotagger should use
multiple threads. This makes things faster but may behave strangely.
Defaults to yes.

color

Either yes or no; whether to use color in console output (currently
only in the import command). Turn this off if your terminal doesn’t
support ANSI colors.

list_format_item

Format to use when listing individual items with the list
command and other commands that need to print out items. Defaults to
$artist - $album - $title. The -f command-line option overrides
this setting.

list_format_album

Format to use when listing albums with list and other
commands. Defaults to $albumartist - $album. The -f command-line
option overrides this setting.

original_date

Either yes or no, indicating whether matched albums should have their
year, month, and day fields set to the release date of the
original version of an album rather than the selected version of the release.
That is, if this option is turned on, then year will always equal
original_year and so on. Default: no.

per_disc_numbering

A boolean controlling the track numbering style on multi-disc releases. By
default (per_disc_numbering: no), tracks are numbered per-release, so the
first track on the second disc has track number N+1 where N is the number of
tracks on the first disc. If this per_disc_numbering is enabled, then the
first track on each disc always has track number 1.

If you enable per_disc_numbering, you will likely want to change your
Path Format Configuration also to include $disc before $track to make
filenames sort correctly in album directories. For example, you might want to
use a path format like this:

paths:
 default: $albumartist/$album%aunique{}/$disc-$track $title

terminal_encoding

The text encoding, as known to Python [http://docs.python.org/2/library/codecs.html#standard-encodings], to use for messages printed to the
standard output. By default, this is determined automatically from the locale
environment variables.

clutter

When beets imports all the files in a directory, it tries to remove the
directory if it’s empty. A directory is considered empty if it only contains
files whose names match the glob patterns in clutter, which should be a list
of strings. The default list consists of “Thumbs.DB” and ”.DS_Store”.

max_filename_length

Set the maximum number of characters in a filename, after which names will be
truncated. By default, beets tries to ask the filesystem for the correct
maximum.

Importer Options

The options that control the import command are indented under the
import: key. For example, you might have a section in your configuration
file that looks like this:

import:
 write: yes
 copy: yes
 resume: no

These options are available in this section:

write

Either yes or no, controlling whether metadata (e.g., ID3) tags are
written to files when using beet import. Defaults to yes. The -w
and -W command-line options override this setting.

copy

Either yes or no, indicating whether to copy files into the
library directory when using beet import. Defaults to yes. Can be
overridden with the -c and -C command-line options.

The option is ignored if move is enabled (i.e., beets can move or
copy files but it doesn’t make sense to do both).

move

Either yes or no, indicating whether to move files into the
library directory when using beet import.
Defaults to no.

The effect is similar to the copy option but you end up with only
one copy of the imported file. (“Moving” works even across filesystems; if
necessary, beets will copy and then delete when a simple rename is
impossible.) Moving files can be risky—it’s a good idea to keep a backup in
case beets doesn’t do what you expect with your files.

This option overrides copy, so enabling it will always move
(and not copy) files. The -c switch to the beet import command,
however, still takes precedence.

resume

Either yes, no, or ask. Controls whether interrupted imports
should be resumed. “Yes” means that imports are always resumed when
possible; “no” means resuming is disabled entirely; “ask” (the default)
means that the user should be prompted when resuming is possible. The -p
and -P flags correspond to the “yes” and “no” settings and override this
option.

incremental

Either yes or no, controlling whether imported directories are
recorded and whether these recorded directories are skipped. This
corresponds to the -i flag to beet import.

quiet_fallback

Either skip (default) or asis, specifying what should happen in
quiet mode (see the -q flag to import, above) when there is no
strong recommendation.

none_rec_action

Either ask (default), asis or skip. Specifies what should happen
during an interactive import session when there is no recommendation. Useful
when you are only interested in processing medium and strong recommendations
interactively.

timid

Either yes or no, controlling whether the importer runs in timid
mode, in which it asks for confirmation on every autotagging match, even the
ones that seem very close. Defaults to no. The -t command-line flag
controls the same setting.

log

Specifies a filename where the importer’s log should be kept. By default,
no log is written. This can be overridden with the -l flag to
import.

default_action

One of apply, skip, asis, or none, indicating which option
should be the default when selecting an action for a given match. This is the
action that will be taken when you type return without an option letter. The
default is apply.

languages

A list of locale names to search for preferred aliases. For example, setting
this to “en” uses the transliterated artist name “Pyotr Ilyich Tchaikovsky”
instead of the Cyrillic script for the composer’s name when tagging from
MusicBrainz. Defaults to an empty list, meaning that no language is preferred.

detail

Whether the importer UI should show detailed information about each match it
finds. When enabled, this mode prints out the title of every track, regardless
of whether it matches the original metadata. (The default behavior only shows
changes.) Default: no.

MusicBrainz Options

If you run your own MusicBrainz [http://musicbrainz.org/] server, you can instruct beets to use it
instead of the main server. Use the host and ratelimit options under a
musicbrainz: header, like so:

musicbrainz:
 host: localhost
 ratelimit: 100

The host key, of course, controls the Web server that will be contacted by
beets (default: musicbrainz.org). The ratelimit option, an integer,
controls the number of Web service requests per second (default: 1). Do not
change the rate limit setting if you’re using the main MusicBrainz
server—on this public server, you’re limited [http://musicbrainz.org/doc/XML_Web_Service/Rate_Limiting] to one request per second.

Autotagger Matching Options

You can configure some aspects of the logic beets uses when automatically
matching MusicBrainz results under the match: section. To control how
tolerant the autotagger is of differences, use the strong_rec_thresh
option, which reflects the distance threshold below which beets will make a
“strong recommendation” that the metadata be used. Strong recommendations
are accepted automatically (except in “timid” mode), so you can use this to
make beets ask your opinion more or less often.

The threshold is a distance value between 0.0 and 1.0, so you can think of it
as the opposite of a similarity value. For example, if you want to
automatically accept any matches above 90% similarity, use:

match:
 strong_rec_thresh: 0.10

The default strong recommendation threshold is 0.04.

The medium_rec_thresh and rec_gap_thresh options work similarly. When a
match is above the medium recommendation threshold or the distance between it
and the next-best match is above the gap threshold, the importer will suggest
that match but not automatically confirm it. Otherwise, you’ll see a list of
options to choose from.

max_rec

As mentioned above, autotagger matches have recommendations that control how
the UI behaves for a certain quality of match. The recommendation for a certain
match is usually based on the distance calculation. But you can also control
the recommendation for certain specific situations by defining maximum
recommendations when (a) a match has missing/extra tracks; (b) the track number
for at least one track differs; or (c) the track length for at least one track
differs.

To define maxima, use keys under max_rec: in the match section:

match:
 max_rec:
 partial: medium
 tracklength: strong
 tracknumber: strong

If a recommendation is higher than the configured maximum and the condition is
met, the recommendation will be downgraded. The maximum for each condition can
be one of none, low, medium or strong. When the maximum
recommendation is strong, no “downgrading” occurs for that situation.

The above example shows the default max_rec settings.

Path Format Configuration

You can also configure the directory hierarchy beets uses to store music.
These settings appear under the paths: key. Each string is a template
string that can refer to metadata fields like $artist or $title. The
filename extension is added automatically. At the moment, you can specify three
special paths: default for most releases, comp for “various artist”
releases with no dominant artist, and singleton for non-album tracks. The
defaults look like this:

paths:
 default: $albumartist/$album%aunique{}/$track $title
 singleton: Non-Album/$artist/$title
 comp: Compilations/$album%aunique{}/$track $title

Note the use of $albumartist instead of $artist; this ensure that albums
will be well-organized. For more about these format strings, see
Path Formats. The aunique{} function ensures that identically-named
albums are placed in different directories; see Album Disambiguation for details.

In addition to default, comp, and singleton, you can condition path
queries based on beets queries (see Queries). This means that a
config file like this:

paths:
 albumtype:soundtrack: Soundtracks/$album/$track $title

will place soundtrack albums in a separate directory. The queries are tested in
the order they appear in the configuration file, meaning that if an item matches
multiple queries, beets will use the path format for the first matching query.

Note that the special singleton and comp path format conditions are, in
fact, just shorthand for the explicit queries singleton:true and
comp:true. In contrast, default is special and has no query equivalent:
the default format is only used if no queries match.

Example

Here’s an example file:

library: /var/music.blb
directory: /var/mp3
path_format: $genre/$artist/$album/$track $title
import:
 copy: yes
 write: yes
 resume: ask
 quiet_fallback: skip
 timid: no
 log: beetslog.txt
ignore: .AppleDouble ._* *~ .DS_Store
art_filename: albumart
plugins: bpd
pluginpath: ~/beets/myplugins
threaded: yes
color: yes

paths:
 default: $genre/$albumartist/$album/$track $title
 singleton: Singletons/$artist - $title
 comp: $genre/$album/$track $title
 albumtype:soundtrack: Soundtracks/$album/$track $title

bpd:
 host: 127.0.0.1
 port: 6600
 password: seekrit

(That [bpd] section configures the optional BPD
plugin.)

 Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 	1.0b15

 	1.0b14

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	beets 1.1.0 documentation

 	Reference

Path Formats

The [paths] section of the config file (see Configuration) lets
you specify the directory and file naming scheme for your music library.
Templates substitute symbols like $title (any field value prefixed by $)
with the appropriate value from the track’s metadata. Beets adds the filename
extension automatically.

For example, consider this path format string:
$albumartist/$album/$track $title

Here are some paths this format will generate:

	Yeah Yeah Yeahs/It's Blitz!/01 Zero.mp3

	Spank Rock/YoYoYoYoYo/11 Competition.mp3

	The Magnetic Fields/Realism/01 You Must Be Out of Your Mind.mp3

Because $ is used to delineate a field reference, you can use $$ to emit
a dollars sign. As with Python template strings [http://docs.python.org/library/string.html#template-strings], ${title} is equivalent
to $title; you can use this if you need to separate a field name from the
text that follows it.

A Note About Artists

Note that in path formats, you almost certainly want to use $albumartist and
not $artist. The latter refers to the “track artist” when it is present,
which means that albums that have tracks from different artists on them (like
Stop Making Sense [http://musicbrainz.org/release/798dcaab-0f1a-4f02-a9cb-61d5b0ddfd36.html], for example) will be placed into different folders!
Continuing with the Stop Making Sense example, you’ll end up with most of the
tracks in a “Talking Heads” directory and one in a “Tom Tom Club” directory. You
probably don’t want that! So use $albumartist.

As a convenience, however, beets allows $albumartist to fall back to the value for $artist and vice-versa if one tag is present but the other is not.

Functions

Beets path formats also support function calls, which can be used to transform
text and perform logical manipulations. The syntax for function calls is like
this: %func{arg,arg}. For example, the upper function makes its argument
upper-case, so %upper{beets rocks} will be replaced with BEETS ROCKS.
You can, of course, nest function calls and place variable references in
function arguments, so %upper{$artist} becomes the upper-case version of the
track’s artists.

These functions are built in to beets:

	%lower{text}: Convert text to lowercase.

	%upper{text}: Convert text to UPPERCASE.

	%title{text}: Convert text to Title Case.

	%left{text,n}: Return the first n characters of text.

	%right{text,n}: Return the last n characters of text.

	%if{condition,text} or %if{condition,truetext,falsetext}: If
condition is nonempty (or nonzero, if it’s a number), then returns
the second argument. Otherwise, returns the third argument if specified (or
nothing if falsetext is left off).

	%asciify{text}: Convert non-ASCII characters to their ASCII equivalents.
For example, “café” becomes “cafe”. Uses the mapping provided by the
unidecode module [http://pypi.python.org/pypi/Unidecode].

	%aunique{identifiers,disambiguators}: Provides a unique string to
disambiguate similar albums in the database. See Album Disambiguation, below.

Plugins can extend beets with more template functions (see
Writing Plugins).

Album Disambiguation

Occasionally, bands release two albums with the same name (c.f. Crystal Castles,
Weezer, and any situation where a single has the same name as an album or EP).
Beets ships with special support, in the form of the %aunique{} template
function, to avoid placing two identically-named albums in the same directory on
disk.

The aunique function detects situations where two albums have some identical
fields and emits text from additional fields to disambiguate the albums. For
example, if you have both Crystal Castles albums in your library, %aunique{}
will expand to “[2008]” for one album and “[2010]” for the other. The
function detects that you have two albums with the same artist and title but
that they have different release years.

For full flexibility, the %aunique function takes two arguments, each of
which are whitespace-separated lists of album field names: a set of
identifiers and a set of disambiguators. Any group of albums with identical
values for all the identifiers will be considered “duplicates”. Then, the
function tries each disambiguator field, looking for one that distinguishes each
of the duplicate albums from each other. The first such field is used as the
result for %aunique. If no field suffices, an arbitrary number is used to
distinguish the two albums.

The default identifiers are albumartist album and the default disambiguators
are albumtype year label catalognum albumdisambig. So you can get reasonable
disambiguation behavior if you just use %aunique{} with no parameters in
your path forms (as in the default path formats), but you can customize the
disambiguation if, for example, you include the year by default in path formats.

One caveat: When you import an album that is named identically to one already in
your library, the first album—the one already in your library— will not
consider itself a duplicate at import time. This means that %aunique{} will
expand to nothing for this album and no disambiguation string will be used at
its import time. Only the second album will receive a disambiguation string. If
you want to add the disambiguation string to both albums, just run beet move
(possibly restricted by a query) to update the paths for the albums.

Syntax Details

The characters $, %, {, }, and , are “special” in the path
template syntax. This means that, for example, if you want a % character to
appear in your paths, you’ll need to be careful that you don’t accidentally
write a function call. To escape any of these characters (except {), prefix
it with a $. For example, $$ becomes $; $% becomes %, etc.
The only exception is ${, which is ambiguous with the variable reference
syntax (like ${title}). To insert a { alone, it’s always sufficient to
just type {.

If a value or function is undefined, the syntax is simply left unreplaced. For
example, if you write $foo in a path template, this will yield $foo in
the resulting paths because “foo” is not a valid field name. The same is true of
syntax errors like unclosed {} pairs; if you ever see template syntax
constructs leaking into your paths, check your template for errors.

If an error occurs in the Python code that implements a function, the function
call will be expanded to a string that describes the exception so you can debug
your template. For example, the second parameter to %left must be an
integer; if you write %left{foo,bar}, this will be expanded to something
like <ValueError: invalid literal for int()>.

Available Values

Here’s a list of the different values available to path formats. The current
list can be found definitively by running the command beet fields. Note that
plugins can add new (or replace existing) template values (see
Writing Plugins).

Ordinary metadata:

	title

	artist

	artist_sort: The “sort name” of the track artist (e.g., “Beatles, The” or
“White, Jack”).

	artist_credit: The track-specific artist credit [http://wiki.musicbrainz.org/Artist_Credit] name, which may be a
variation of the artist’s “canonical” name.

	album

	albumartist: The artist for the entire album, which may be different from the
artists for the individual tracks.

	albumartist_sort

	albumartist_credit

	genre

	composer

	grouping

	year, month, day: The release date of the specific release.

	original_year, original_month, original_day: The release date of the original
version of the album.

	tracktotal

	disc

	disctotal

	lyrics

	comments

	bpm

	comp: Compilation flag.

	albumtype: The MusicBrainz album type; the MusicBrainz wiki has a list of
type names [http://musicbrainz.org/doc/Release_Group/Type].

	label

	asin

	catalognum

	script

	language

	country

	albumstatus

	media

	albumdisambig

	disctitle

	encoder

Audio information:

	length (in seconds)

	bitrate (in kilobits per second, with units: e.g., “192kbps”)

	format (e.g., “MP3” or “FLAC”)

	channels

	bitdepth (only available for some formats)

	samplerate (in kilohertz, with units: e.g., “48kHz”)

MusicBrainz and fingerprint information:

	mb_trackid

	mb_albumid

	mb_artistid

	mb_albumartistid

	mb_releasegroupid

	acoustid_fingerprint

	acoustid_id

 Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 	1.0b15

 	1.0b14

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	beets 1.1.0 documentation

 	Reference

Queries

Many of beets’ commands are built around query strings:
searches that select tracks and albums from your library. This page explains the
query string syntax, which is meant to vaguely resemble the syntax used by Web
search engines.

Keyword

This command:

$ beet list love

will show all tracks matching the query string love. Any unadorned word like this matches anywhere in a track’s metadata, so you’ll see all the tracks with “love” in their title, in their album name, in the artist, and so on.

For example, this is what I might see when I run the command above:

Against Me! - Reinventing Axl Rose - I Still Love You Julie
Air - Love 2 - Do the Joy
Bag Raiders - Turbo Love - Shooting Stars
Bat for Lashes - Two Suns - Good Love
...

Combining Keywords

Multiple keywords are implicitly joined with a Boolean “and.” That is, if a
query has two keywords, it only matches tracks that contain both keywords. For
example, this command:

$ beet ls magnetic tomorrow

matches songs from the album “The House of Tomorrow” by The Magnetic Fields in
my library. It doesn’t match other songs by the Magnetic Fields, nor does it
match “Tomorrowland” by Walter Meego—those songs only have one of the two
keywords I specified.

Specific Fields

Sometimes, a broad keyword match isn’t enough. Beets supports a syntax that lets
you query a specific field—only the artist, only the track title, and so on.
Just say field:value, where field is the name of the thing you’re trying
to match (such as artist, album, or title) and value is the
keyword you’re searching for.

For example, while this query:

$ beet list dream

matches a lot of songs in my library, this more-specific query:

$ beet list artist:dream

only matches songs by the artist The-Dream. One query I especially appreciate is
one that matches albums by year:

$ beet list -a year:2012

Recall that -a makes the list command show albums instead of individual
tracks, so this command shows me all the releases I have from this year.

Phrases

You can query for strings with spaces in them by quoting or escaping them using
your shell’s argument syntax. For example, this command:

$ beet list the rebel

shows several tracks in my library, but these (equivalent) commands:

$ beet list "the rebel"
$ beet list the\ rebel

only match the track “The Rebel” by Buck 65. Note that the quotes and
backslashes are not part of beets’ syntax; I’m just using the escaping
functionality of my shell (bash or zsh, for instance) to pass the rebel as a
single argument instead of two.

Regular Expressions

While ordinary keywords perform simple substring matches, beets also supports
regular expression matching for more advanced queries. To run a regex query, use
an additional : between the field name and the expression:

$ beet list 'artist::Ann(a|ie)'

That query finds songs by Anna Calvi and Annie but not Annuals. Similarly, this
query prints the path to any file in my library that’s missing a track title:

$ beet list -p title::^$

To search all fields using a regular expression, just prefix the expression
with a single :, like so:

$ beet list :Ho[pm]eless

Regular expressions are case-sensitive and build on Python’s built-in
implementation [http://docs.python.org/library/re.html]. See Python’s documentation for specifics on regex syntax.

Path Queries

Sometimes it’s useful to find all the items in your library that are
(recursively) inside a certain directory. Use the path: field to do this:

$ beet list path:/my/music/directory

In fact, beets automatically recognizes any query term containing a path
separator (/ on POSIX systems) as a path query, so this command is
equivalent:

$ beet list /my/music/directory

Note that this only matches items that are already in your library, so a path
query won’t necessarily find all the audio files in a directory—just the
ones you’ve already added to your beets library.

 Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 	1.0b15

 	1.0b14

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	beets 1.1.0 documentation

Plugins

Plugins can extend beets’ core functionality. Plugins can add new commands to
the command-line interface, respond to events in beets, augment the autotagger,
or provide new path template functions.

Using Plugins

To use a plugin, you have two options:

	Make sure it’s in the Python path (known as sys.path to developers). This
just means the plugin has to be installed on your system (e.g., with a
setup.py script or a command like pip or easy_install).

	Set the pluginpath config variable to point to the directory containing the
plugin. (See Command-Line Interface.)

Then, set the plugins option in your config.yaml file, like so:

plugins: mygreatplugin someotherplugin

The value for plugins can be a space-separated list of plugin names or
a YAML list like [foo, bar].

You can see which plugins are currently enabled by typing beet version.

Plugins Included With Beets

There are a few plugins that are included with the beets distribution. They’re
disabled by default, but you can turn them on as described above.

Autotagger Extensions

	Chromaprint/Acoustid Plugin: Use acoustic fingerprinting to identify audio files with
missing or incorrect metadata.

Metadata

	Lyrics Plugin: Automatically fetch song lyrics.

	EchoNest Tempo Plugin: Automatically fetch song tempos (bpm).

	LastGenre Plugin: Fetch genres based on Last.fm tags.

	MBSync Plugin: Fetch updated metadata from MusicBrainz

	FetchArt Plugin: Fetch album cover art from various sources.

	EmbedArt Plugin: Embed album art images into files’ metadata.

	ReplayGain Plugin: Calculate volume normalization for players that support it.

	Scrub Plugin: Clean extraneous metadata from music files.

	Zero Plugin: Nullify fields by pattern or unconditionally.

Path Formats

	Inline Plugin: Use Python snippets to customize path format strings.

	Rewrite Plugin: Substitute values in path formats.

	The Plugin: Move patterns in path formats (i.e., move “a” and “the” to the
end).

Interoperability

	MPDUpdate Plugin: Automatically notifies MPD [http://mpd.wikia.com/] whenever the beets library
changes.

	ImportFeeds Plugin: Keep track of imported files via .m3u playlist file(s) or symlinks.

	Smart Playlist Plugin: Generate smart playlists based on beets queries.

Miscellaneous

	Web Plugin: An experimental Web-based GUI for beets.

	Random Plugin: Randomly choose albums and tracks from your library.

	Fuzzy Search Plugin: Search albums and tracks with fuzzy string matching.

	MusicBrainz Collection Plugin: Maintain your MusicBrainz collection list.

	IHate Plugin: Automatically skip albums and tracks during the import process.

	BPD Plugin: A music player for your beets library that emulates MPD [http://mpd.wikia.com/] and is
compatible with MPD clients [http://mpd.wikia.com/wiki/Clients].

	Convert Plugin: Transcode music and embed album art while exporting to
a different directory.

	Info Plugin: Print music files’ tags to the console.

Other Plugins

Here are a few of the plugins written by the beets community:

	beetFs [http://code.google.com/p/beetfs/] is a FUSE filesystem for browsing the music in your beets library.
(Might be out of date.)

	A cmus plugin [https://github.com/coolkehon/beets/blob/master/beetsplug/cmus.py] integrates with the cmus [http://cmus.sourceforge.net/] console music player.

	featInTitle [https://github.com/Verrus/beets-plugin-featInTitle/] moves featured artists from the artist tag to the title tag.

Writing Plugins

If you know a little Python, you can write your own plugin to do almost anything
you can imagine with your music collection. See the guide to writing beets
plugins.

 Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 	1.0b15

 	1.0b14

 Navigation

 	
 index

 	
 previous |

 	beets 1.1.0 documentation

Changelog

1.1.0 (April 29, 203)

This final release of 1.1 brings a little polish to the betas that introduced
the new configuration system. The album art and lyrics plugins also got a
little love.

If you’re upgrading from 1.0.0 or earlier, this release (like the 1.1 betas)
will automatically migrate your configuration to the new system. See
Upgrading from 1.0.

	EmbedArt Plugin: The embedart command now embeds each album’s
associated art by default. The --file option invokes the old behavior,
in which a specific image file is used.

	Lyrics Plugin: A new (optional) Google Custom Search backend was
added for finding lyrics on a wide array of sites. Thanks to Fabrice
Laporte.

	When automatically detecting the filesystem’s maximum filename length, never
guess more than 200 characters. This prevents errors on systems where the
maximum length was misreported. You can, of course, override this default
with the max_filename_length option.

	FetchArt Plugin: Two new configuration options were added:
cover_names, the list of keywords used to identify preferred images, and
cautious, which lets you avoid falling back to images that don’t contain
those keywords. Thanks to Fabrice Laporte.

	Avoid some error cases in the update command and the embedart and
mbsync plugins. Invalid or missing files now cause error logs instead of
crashing beets. Thanks to Lucas Duailibe.

	Lyrics Plugin: Searches now strip “featuring” artists when
searching for lyrics, which should increase the hit rate for these tracks.
Thanks to Fabrice Laporte.

	When listing the items in an album, the items are now always in track-number
order. This should lead to more predictable listings from the
ImportFeeds Plugin.

	Smart Playlist Plugin: Queries are now split using shell-like syntax
instead of just whitespace, so you can now construct terms that contain
spaces.

	LastGenre Plugin: The force config option now defaults to true
and controls the behavior of the import hook. (Previously, new genres were
always forced during import.)

	Web Plugin: Fix an error when specifying the hostname on the
command line.

	Web Plugin: The underlying API was expanded slightly to support
Tomahawk [http://www.tomahawk-player.org/] collections. And file transfers now have a “Content-Length”
header. Thanks to Uwe L. Korn.

	LastGenre Plugin: Fix an error when using genre canonicalization.

1.1b3 (March 16, 2013)

This third beta of beets 1.1 brings a hodgepodge of little new features (and
internal overhauls that will make improvements easier in the future). There
are new options for getting metadata in a particular language and seeing more
detail during the import process. There’s also a new plugin for synchronizing
your metadata with MusicBrainz. Under the hood, plugins can now extend the
query syntax.

New configuration options:

	languages controls the preferred languages when selecting an alias
from MusicBrainz. This feature requires python-musicbrainz-ngs [https://github.com/alastair/python-musicbrainz-ngs] 0.3 or
later. Thanks to Sam Doshi.

	detail enables a mode where all tracks are listed in the importer UI,
as opposed to only changed tracks.

	The --flat option to the beet import command treats an entire
directory tree of music files as a single album. This can help in situations
where a multi-disc album is split across multiple directories.

	ImportFeeds Plugin: An option was added to use absolute, rather
than relative, paths. Thanks to Lucas Duailibe.

Other stuff:

	A new MBSync Plugin provides a command that looks up each item and
track in MusicBrainz and updates your library to reflect it. This can help
you easily correct errors that have been fixed in the MB database. Thanks to
Jakob Schnitzer.

	Fuzzy Search Plugin: The fuzzy command was removed and replaced with a
new query type. To perform fuzzy searches, use the ~ prefix with
list or other commands. Thanks to Philippe Mongeau.

	As part of the above, plugins can now extend the query syntax and new kinds
of matching capabilities to beets. See Extend the Query Syntax. Thanks again to
Philippe Mongeau.

	Convert Plugin: A new --keep-new option lets you store
transcoded files in your library while backing up the originals (instead of
vice-versa). Thanks to Lucas Duailibe.

	Convert Plugin: Also, a new auto config option will transcode
audio files automatically during import. Thanks again to Lucas Duailibe.

	Chromaprint/Acoustid Plugin: A new fingerprint command lets you generate and
store fingerprints for items that don’t yet have them. One more round of
applause for Lucas Duailibe.

	EchoNest Tempo Plugin: API errors now issue a warning instead of
exiting with an exception. We also avoid an error when track metadata
contains newlines.

	When the importer encounters an error (insufficient permissions, for
example) when walking a directory tree, it now logs an error instead of
crashing.

	In path formats, null database values now expand to the empty string instead
of the string “None”.

	Add “System Volume Information” (an internal directory found on some
Windows filesystems) to the default ignore list.

	Fix a crash when ReplayGain values were set to null.

	Fix a crash when iTunes Sound Check tags contained invalid data.

	Fix an error when the configuration file (config.yaml) is completely
empty.

	Fix an error introduced in 1.1b1 when importing using timid mode. Thanks to
Sam Doshi.

	Convert Plugin: Fix a bug when creating files with Unicode
pathnames.

	Fix a spurious warning from the Unidecode module when matching albums that
are missing all metadata.

	Fix Unicode errors when a directory or file doesn’t exist when invoking the
import command. Thanks to Lucas Duailibe.

	MusicBrainz Collection Plugin: Show friendly, human-readable errors when
MusicBrainz exceptions occur.

	EchoNest Tempo Plugin: Catch socket errors that are not handled by
the Echo Nest library.

	Chromaprint/Acoustid Plugin: Catch Acoustid Web service errors when submitting
fingerprints.

1.1b2 (February 16, 2013)

The second beta of beets 1.1 uses the fancy new configuration infrastructure to
add many, many new config options. The import process is more flexible;
filenames can be customized in more detail; and more. This release also
supports Windows Media (ASF) files and iTunes Sound Check volume normalization.

This version introduces one change to the default behavior that you should
be aware of. Previously, when importing new albums matched in MusicBrainz, the
date fields (year, month, and day) would be set to the release date
of the original version of the album, as opposed to the specific date of the
release selected. Now, these fields reflect the specific release and
original_year, etc., reflect the earlier release date. If you want the old
behavior, just set original_date to true in your config file.

New configuration options:

	default_action lets you determine the default (just-hit-return) option
is when considering a candidate.

	none_rec_action lets you skip the prompt, and automatically choose an
action, when there is no good candidate. Thanks to Tai Lee.

	max_rec lets you define a maximum recommendation for albums with
missing/extra tracks or differing track lengths/numbers. Thanks again to Tai
Lee.

	original_date determines whether, when importing new albums, the
year, month, and day fields should reflect the specific (e.g.,
reissue) release date or the original release date. Note that the original
release date is always available as original_year, etc.

	clutter controls which files should be ignored when cleaning up empty
directories. Thanks to Steinþór Pálsson.

	LastGenre Plugin: A new configuration option lets you choose to
retrieve artist-level tags as genres instead of album- or track-level tags.
Thanks to Peter Fern and Peter Schnebel.

	max_filename_length controls truncation of long filenames. Also, beets
now tries to determine the filesystem’s maximum length automatically if you
leave this option unset.

	FetchArt Plugin: The remote_priority option searches remote
(Web) art sources even when local art is present.

	You can now customize the character substituted for path separators (e.g., /)
in filenames via path_sep_replace. The default is an underscore. Use this
setting with caution.

Other new stuff:

	Support for Windows Media/ASF audio files. Thanks to Dave Hayes.

	New Smart Playlist Plugin: generate and maintain m3u playlist files
based on beets queries. Thanks to Dang Mai Hai.

	ReplayGain tags on MPEG-4/AAC files are now supported. And, even more
astonishingly, ReplayGain values in MP3 and AAC files are now compatible with
iTunes Sound Check [http://support.apple.com/kb/HT2425]. Thanks to Dave Hayes.

	Track titles in the importer UI’s difference display are now either aligned
vertically or broken across two lines for readability. Thanks to Tai Lee.

	Albums and items have new fields reflecting the original release date
(original_year, original_month, and original_day). Previously,
when tagging from MusicBrainz, only the original date was stored; now, the
old fields refer to the specific release date (e.g., when the album was
reissued).

	Some changes to the way candidates are recommended for selection, thanks to
Tai Lee:
	According to the new max_rec configuration option, partial album
matches are downgraded to a “low” recommendation by default.

	When a match isn’t great but is either better than all the others or the
only match, it is given a “low” (rather than “medium”) recommendation.

	There is no prompt default (i.e., input is required) when matches are
bad: “low” or “none” recommendations or when choosing a candidate
other than the first.

	The importer’s heuristic for coalescing the directories in a multi-disc album
has been improved. It can now detect when two directories alongside each
other share a similar prefix but a different number (e.g., “Album Disc 1” and
“Album Disc 2”) even when they are not alone in a common parent directory.
Thanks once again to Tai Lee.

	Album listings in the importer UI now show the release medium (CD, Vinyl,
3xCD, etc.) as well as the disambiguation string. Thanks to Peter Schnebel.

	LastGenre Plugin: The plugin can now get different genres for
individual tracks on an album. Thanks to Peter Schnebel.

	When getting data from MusicBrainz, the album disambiguation string
(albumdisambig) now reflects both the release and the release group.

	MPDUpdate Plugin: Sends an update message whenever anything in the
database changes—not just when importing. Thanks to Dang Mai Hai.

	When the importer UI shows a difference in track numbers or durations, they
are now colorized based on the suffixes that differ. For example, when
showing the difference between 2:01 and 2:09, only the last digit will be
highlighted.

	The importer UI no longer shows a change when the track length difference is
less than 10 seconds. (This threshold was previously 2 seconds.)

	Two new plugin events were added: database_change and cli_exit. Thanks
again to Dang Mai Hai.

	Plugins are now loaded in the order they appear in the config file. Thanks to
Dang Mai Hai.

	BPD Plugin: Browse by album artist and album artist sort name.
Thanks to Steinþór Pálsson.

	EchoNest Tempo Plugin: Don’t attempt a lookup when the artist or
track title is missing.

	Fix an error when migrating the .beetsstate file on Windows.

	A nicer error message is now given when the configuration file contains tabs.
(YAML doesn’t like tabs.)

	Fix the -l (log path) command-line option for the import command.

1.1b1 (January 29, 2013)

This release entirely revamps beets’ configuration system. The configuration
file is now a YAML [http://en.wikipedia.org/wiki/YAML] document and is located, along with other support files,
in a common directory (e.g., ~/.config/beets on Unix-like systems). If
you’re upgrading from an earlier version, please see Upgrading from 1.0.

	Renamed plugins: The rdm plugin has been renamed to random and
fuzzy_search has been renamed to fuzzy.

	Renamed config options: Many plugins have a flag dictating whether their
action runs at import time. This option had many names (autofetch,
autoembed, etc.) but is now consistently called auto.

	Reorganized import config options: The various import_* options are now
organized under an import: heading and their prefixes have been removed.

	New default file locations: The default filename of the library database is
now library.db in the same directory as the config file, as opposed to
~/.beetsmusic.blb previously. Similarly, the runtime state file is now
called state.pickle in the same directory instead of ~/.beetsstate.

It also adds some new features:

	Inline Plugin: Inline definitions can now contain statements or
blocks in addition to just expressions. Thanks to Florent Thoumie.

	Add a configuration option, terminal_encoding, controlling the text
encoding used to print messages to standard output.

	The MusicBrainz hostname (and rate limiting) are now configurable. See
MusicBrainz Options.

	You can now configure the similarity thresholds used to determine when the
autotagger automatically accepts a metadata match. See Autotagger Matching Options.

	ImportFeeds Plugin: Added a new configuration option that controls
the base for relative paths used in m3u files. Thanks to Philippe Mongeau.

1.0.0 (January 29, 2013)

After fifteen betas and two release candidates, beets has finally hit
one-point-oh. Congratulations to everybody involved. This version of beets will
remain stable and receive only bug fixes from here on out. New development is
ongoing in the betas of version 1.1.

	Scrub Plugin: Fix an incompatibility with Python 2.6.

	Lyrics Plugin: Fix an issue that failed to find lyrics when metadata
contained “real” apostrophes.

	ReplayGain Plugin: On Windows, emit a warning instead of
crashing when analyzing non-ASCII filenames.

	Silence a spurious warning from version 0.04.12 of the Unidecode module.

1.0rc2 (December 31, 2012)

This second release candidate follows quickly after rc1 and fixes a few small
bugs found since that release. There were a couple of regressions and some bugs
in a newly added plugin.

	EchoNest Tempo Plugin: If the Echo Nest API limit is exceeded or a
communication error occurs, the plugin now waits and tries again instead of
crashing. Thanks to Zach Denton.

	FetchArt Plugin: Fix a regression that caused crashes when art was
not available from some sources.

	Fix a regression on Windows that caused all relative paths to be “not found”.

1.0rc1 (December 17, 2012)

The first release candidate for beets 1.0 includes a deluge of new features
contributed by beets users. The vast majority of the credit for this release
goes to the growing and vibrant beets community. A million thanks to everybody
who contributed to this release.

There are new plugins for transcoding music, fuzzy searches, tempo collection,
and fiddling with metadata. The ReplayGain plugin has been rebuilt from
scratch. Album art images can now be resized automatically. Many other smaller
refinements make things “just work” as smoothly as possible.

With this release candidate, beets 1.0 is feature-complete. We’ll be fixing
bugs on the road to 1.0 but no new features will be added. Concurrently, work
begins today on features for version 1.1.

	New plugin: Convert Plugin transcodes music and embeds album art
while copying to a separate directory. Thanks to Jakob Schnitzer and Andrew G.
Dunn.

	New plugin: Fuzzy Search Plugin lets you find albums and tracks
using fuzzy string matching so you don’t have to type (or even remember)
their exact names. Thanks to Philippe Mongeau.

	New plugin: EchoNest Tempo Plugin fetches tempo (BPM) information
from The Echo Nest [http://the.echonest.com/]. Thanks to David Brenner.

	New plugin: The Plugin adds a template function that helps format
text for nicely-sorted directory listings. Thanks to Blemjhoo Tezoulbr.

	New plugin: Zero Plugin filters out undesirable fields before
they are written to your tags. Thanks again to Blemjhoo Tezoulbr.

	New plugin: IHate Plugin automatically skips (or warns you about)
importing albums that match certain criteria. Thanks once again to Blemjhoo
Tezoulbr.

	ReplayGain Plugin: This plugin has been completely overhauled to use
the mp3gain [http://mp3gain.sourceforge.net/download.php] or aacgain [http://aacgain.altosdesign.com] command-line tools instead of the failure-prone
Gstreamer ReplayGain implementation. Thanks to Fabrice Laporte.

	FetchArt Plugin and EmbedArt Plugin: Both plugins can now
resize album art to avoid excessively large images. Use the maxwidth
config option with either plugin. Thanks to Fabrice Laporte.

	Scrub Plugin: Scrubbing now removes all types of tags from a file
rather than just one. For example, if your FLAC file has both ordinary FLAC
tags and ID3 tags, the ID3 tags are now also removed.

	stats command: New --exact switch to make the file size
calculation more accurate (thanks to Jakob Schnitzer).

	list command: Templates given with -f can now show items’ and
albums’ paths (using $path).

	The output of the update, remove, and modify
commands now respects the list_format_album and
list_format_item config options. Thanks to Mike Kazantsev.

	The art_filename option can now be a template rather than a simple
string. Thanks to Jarrod Beardwood.

	Fix album queries for artpath and other non-item fields.

	Null values in the database can now be matched with the empty-string regular
expression, ^$.

	Queries now correctly match non-string values in path format predicates.

	When autotagging a various-artists album, the album artist field is now
used instead of the majority track artist.

	LastGenre Plugin: Use the albums’ existing genre tags if they pass
the whitelist (thanks to Fabrice Laporte).

	LastGenre Plugin: Add a lastgenre command for fetching genres
post facto (thanks to Jakob Schnitzer).

	FetchArt Plugin: Local image filenames are now used in alphabetical
order.

	FetchArt Plugin: Fix a bug where cover art filenames could lack
a .jpg extension.

	Lyrics Plugin: Fix an exception with non-ASCII lyrics.

	Web Plugin: The API now reports file sizes (for use with the
Tomahawk resolver [http://beets.radbox.org/blog/tomahawk-resolver.html]).

	Web Plugin: Files now download with a reasonable filename rather
than just being called “file” (thanks to Zach Denton).

	ImportFeeds Plugin: Fix error in symlink mode with non-ASCII
filenames.

	MusicBrainz Collection Plugin: Fix an error when submitting a large number of
releases (we now submit only 200 releases at a time instead of 350). Thanks
to Jonathan Towne.

	EmbedArt Plugin: Made the method for embedding art into FLAC files
standard [https://wiki.xiph.org/VorbisComment#METADATA_BLOCK_PICTURE]-compliant.
Thanks to Daniele Sluijters.

	Add the track mapping dictionary to the album_distance plugin function.

	When an exception is raised while reading a file, the path of the file in
question is now logged (thanks to Mike Kazantsev).

	Truncate long filenames based on their bytes rather than their Unicode
characters, fixing situations where encoded names could be too long.

	Filename truncation now incorporates the length of the extension.

	Fix an assertion failure when the MusicBrainz main database and search server
disagree.

	Fix a bug that caused the LastGenre Plugin and other plugins not to
modify files’ tags even when they successfully change the database.

	Fix a VFS bug leading to a crash in the BPD Plugin when files had
non-ASCII extensions.

	Fix for changing date fields (like “year”) with the modify
command.

	Fix a crash when input is read from a pipe without a specified encoding.

	Fix some problem with identifying files on Windows with Unicode directory
names in their path.

	Fix a crash when Unicode queries were used with import -L re-imports.

	Fix an error when fingerprinting files with Unicode filenames on Windows.

	Warn instead of crashing when importing a specific file in singleton mode.

	Add human-readable error messages when writing files’ tags fails or when a
directory can’t be created.

	Changed plugin loading so that modules can be imported without
unintentionally loading the plugins they contain.

1.0b15 (July 26, 2012)

The fifteenth (!) beta of beets is compendium of small fixes and features, most
of which represent long-standing requests. The improvements include matching
albums with extra tracks, per-disc track numbering in multi-disc albums, an
overhaul of the album art downloader, and robustness enhancements that should
keep beets running even when things go wrong. All these smaller changes should
help us focus on some larger changes coming before 1.0.

Please note that this release contains one backwards-incompatible change: album
art fetching, which was previously baked into the import workflow, is now
encapsulated in a plugin (the FetchArt Plugin). If you want to continue
fetching cover art for your music, enable this plugin after upgrading to beets
1.0b15.

	The autotagger can now find matches for albums when you have extra tracks
on your filesystem that aren’t present in the MusicBrainz catalog. Previously,
if you tried to match album with 15 audio files but the MusicBrainz entry had
only 14 tracks, beets would ignore this match. Now, beets will show you
matches even when they are “too short” and indicate which tracks from your
disk are unmatched.

	Tracks on multi-disc albums can now be numbered per-disc instead of
per-album via the per_disc_numbering config option.

	The default output format for the beet list command is now configurable
via the list_format_item and list_format_album config options.
Thanks to Fabrice Laporte.

	Album cover art fetching is now encapsulated in the
FetchArt Plugin. Be sure to enable this plugin if you’re using this
functionality. As a result of this new organization, the new plugin has gained
a few new features:
	“As-is” and non-autotagged imports can now have album art imported from
the local filesystem (although Web repositories are still not searched in
these cases).

	A new command, beet fetchart, allows you to download album art
post-import. If you only want to fetch art manually, not automatically
during import, set the new plugin’s autofetch option to no.

	New album art sources have been added.

	Errors when communicating with MusicBrainz now log an error message instead of
halting the importer.

	Similarly, filesystem manipulation errors now print helpful error messages
instead of a messy traceback. They still interrupt beets, but they should now
be easier for users to understand. Tracebacks are still available in verbose
mode.

	New metadata fields for artist credits [http://wiki.musicbrainz.org/Artist_Credit]: artist_credit and
albumartist_credit can now contain release- and recording-specific
variations of the artist’s name. See Available Values.

	Revamped the way beets handles concurrent database access to avoid
nondeterministic SQLite-related crashes when using the multithreaded importer.
On systems where SQLite was compiled without usleep(3) support,
multithreaded database access could cause an internal error (with the message
“database is locked”). This release synchronizes access to the database to
avoid internal SQLite contention, which should avoid this error.

	Plugins can now add parallel stages to the import pipeline. See
Writing Plugins.

	Beets now prints out an error when you use an unrecognized field name in a
query: for example, when running beet ls -a artist:foo (because artist
is an item-level field).

	New plugin events:
	import_task_choice is called after an import task has an action
assigned.

	import_task_files is called after a task’s file manipulation has
finished (copying or moving files, writing metadata tags).

	library_opened is called when beets starts up and opens the library
database.

	LastGenre Plugin: Fixed a problem where path formats containing
$genre would use the old genre instead of the newly discovered one.

	Fix a crash when moving files to a Samba share.

	MPDUpdate Plugin: Fix TypeError crash (thanks to Philippe Mongeau).

	When re-importing files with import_copy enabled, only files inside the
library directory are moved. Files outside the library directory are still
copied. This solves a problem (introduced in 1.0b14) where beets could crash
after adding files to the library but before finishing copying them; during
the next import, the (external) files would be moved instead of copied.

	Artist sort names are now populated correctly for multi-artist tracks and
releases. (Previously, they only reflected the first artist.)

	When previewing changes during import, differences in track duration are now
shown as “2:50 vs. 3:10” rather than separated with -> like track numbers.
This should clarify that beets isn’t doing anything to modify lengths.

	Fix a problem with query-based path format matching where a field-qualified
pattern, like albumtype_soundtrack, would match everything.

	Chromaprint/Acoustid Plugin: Fix matching with ambiguous Acoustids. Some Acoustids
are identified with multiple recordings; beets now considers any associated
recording a valid match. This should reduce some cases of errant track
reordering when using chroma.

	Fix the ID3 tag name for the catalog number field.

	Chromaprint/Acoustid Plugin: Fix occasional crash at end of fingerprint submission
and give more context to “failed fingerprint generation” errors.

	Interactive prompts are sent to stdout instead of stderr.

	EmbedArt Plugin: Fix crash when audio files are unreadable.

	BPD Plugin: Fix crash when sockets disconnect (thanks to Matteo
Mecucci).

	Fix an assertion failure while importing with moving enabled when the file was
already at its destination.

	Fix Unicode values in the replace config option (thanks to Jakob Borg).

	Use a nicer error message when input is requested but stdin is closed.

	Fix errors on Windows for certain Unicode characters that can’t be represented
in the MBCS encoding. This required a change to the way that paths are
represented in the database on Windows; if you find that beets’ paths are out
of sync with your filesystem with this release, delete and recreate your
database with beet import -AWC /path/to/music.

	Fix import with relative path arguments on Windows.

1.0b14 (May 12, 2012)

The centerpiece of this beets release is the graceful handling of
similarly-named albums. It’s now possible to import two albums with the same
artist and title and to keep them from conflicting in the filesystem. Many other
awesome new features were contributed by the beets community, including regular
expression queries, artist sort names, moving files on import. There are three
new plugins: random song/album selection; MusicBrainz “collection” integration;
and a plugin for interoperability with other music library systems.

A million thanks to the (growing) beets community for making this a huge
release.

	The importer now gives you choices when duplicates are detected.
Previously, when beets found an existing album or item in your library
matching the metadata on a newly-imported one, it would just skip the new
music to avoid introducing duplicates into your library. Now, you have three
choices: skip the new music (the previous behavior), keep both, or remove the
old music. See the Duplicates section in the autotagging guide
for details.

	Beets can now avoid storing identically-named albums in the same directory.
The new %aunique{} template function, which is included in the default
path formats, ensures that Crystal Castles’ albums will be placed into
different directories. See Album Disambiguation for details.

	Beets queries can now use regular expressions. Use an additional : in
your query to enable regex matching. See Regular Expressions for the full details.
Thanks to Matteo Mecucci.

	Artist sort names are now fetched from MusicBrainz. There are two new data
fields, artist_sort and albumartist_sort, that contain sortable artist
names like “Beatles, The”. These fields are also used to sort albums and items
when using the list command. Thanks to Paul Provost.

	Many other new metadata fields were added, including ASIN, label catalog
number, disc title, encoder, and MusicBrainz release group ID. For a full list
of fields, see Available Values.

	Chromaprint/Acoustid Plugin: A new command, beet submit, will submit
fingerprints to the Acoustid database. Submitting your library helps
increase the coverage and accuracy of Acoustid fingerprinting. The Chromaprint
fingerprint and Acoustid ID are also now stored for all fingerprinted tracks.
This version of beets requires at least version 0.6 of pyacoustid [https://github.com/sampsyo/pyacoustid] for
fingerprinting to work.

	The importer can now move files. Previously, beets could only copy files
and delete the originals, which is inefficient if the source and destination
are on the same filesystem. Use the import_move configuration option and
see Configuration for more details. Thanks to Domen Kožar.

	New Random Plugin: Randomly select albums and tracks from your library.
Thanks to Philippe Mongeau.

	The MusicBrainz Collection Plugin by Jeffrey Aylesworth was added to the core
beets distribution.

	New ImportFeeds Plugin: Catalog imported files in m3u playlist
files or as symlinks for easy importing to other systems. Thanks to Fabrice
Laporte.

	The -f (output format) option to the beet list command can now contain
template functions as well as field references. Thanks to Steve Dougherty.

	A new command beet fields displays the available metadata fields (thanks
to Matteo Mecucci).

	The import command now has a --noincremental or -I flag to disable
incremental imports (thanks to Matteo Mecucci).

	When the autotagger fails to find a match, it now displays the number of
tracks on the album (to help you guess what might be going wrong) and a link
to the FAQ.

	The default filename character substitutions were changed to be more
conservative. The Windows “reserved characters” are substituted by default
even on Unix platforms (this causes less surprise when using Samba shares to
store music). To customize your character substitutions, see the replace
config option.

	LastGenre Plugin: Added a “fallback” option when no suitable genre
can be found (thanks to Fabrice Laporte).

	Rewrite Plugin: Unicode rewriting rules are now allowed (thanks to
Nicolas Dietrich).

	Filename collisions are now avoided when moving album art.

	BPD Plugin: Print messages to show when directory tree is being
constructed.

	BPD Plugin: Use Gstreamer’s playbin2 element instead of the
deprecated playbin.

	BPD Plugin: Random and repeat modes are now supported (thanks to
Matteo Mecucci).

	BPD Plugin: Listings are now sorted (thanks once again to Matteo
Mecucci).

	Filenames are normalized with Unicode Normal Form D (NFD) on Mac OS X and NFC
on all other platforms.

	Significant internal restructuring to avoid SQLite locking errors. As part of
these changes, the not-very-useful “save” plugin event has been removed.

1.0b13 (March 16, 2012)

Beets 1.0b13 consists of a plethora of small but important fixes and
refinements. A lyrics plugin is now included with beets; new audio properties
are catalogged; the list command has been made more powerful; the autotagger
is more tolerant of different tagging styles; and importing with original file
deletion now cleans up after itself more thoroughly. Many, many bugs—including
several crashers—were fixed. This release lays the foundation for more features
to come in the next couple of releases.

	The Lyrics Plugin, originally by Peter Brunner [https://github.com/Lugoues], is revamped and
included with beets, making it easy to fetch song lyrics.

	Items now expose their audio sample rate, number of channels, and
bits per sample (bitdepth). See Path Formats for a list of
all available audio properties. Thanks to Andrew Dunn.

	The beet list command now accepts a “format” argument that lets you show
specific information about each album or track. For example, run beet ls
-af '$album: $tracktotal' beatles to see how long each Beatles album is.
Thanks to Philippe Mongeau.

	The autotagger now tolerates tracks on multi-disc albums that are numbered
per-disc. For example, if track 24 on a release is the first track on the
second disc, then it is not penalized for having its track number set to 1
instead of 24.

	The autotagger sets the disc number and disc total fields on autotagged
albums.

	The autotagger now also tolerates tracks whose track artists tags are set
to “Various Artists”.

	Terminal colors are now supported on Windows via Colorama [http://pypi.python.org/pypi/colorama] (thanks to Karl).

	When previewing metadata differences, the importer now shows discrepancies in
track length.

	Importing with import_delete enabled now cleans up empty directories that
contained deleting imported music files.

	Similarly, import_delete now causes original album art imported from the
disk to be deleted.

	Plugin-supplied template values, such as those created by rewrite, are now
properly sanitized (for example, AC/DC properly becomes AC_DC).

	Filename extensions are now always lower-cased when copying and moving files.

	The inline plugin now prints a more comprehensible error when exceptions
occur in Python snippets.

	The replace configuration option can now remove characters entirely (in
addition to replacing them) if the special string <strip> is specified as
the replacement.

	New plugin API: plugins can now add fields to the MediaFile tag abstraction
layer. See Writing Plugins.

	A reasonable error message is now shown when the import log file cannot be
opened.

	The import log file is now flushed and closed properly so that it can be used
to monitor import progress, even when the import crashes.

	Duplicate track matches are no longer shown when autotagging singletons.

	The chroma plugin now logs errors when fingerprinting fails.

	The lastgenre plugin suppresses more errors when dealing with the Last.fm
API.

	Fix a bug in the rewrite plugin that broke the use of multiple rules for
a single field.

	Fix a crash with non-ASCII characters in bytestring metadata fields (e.g.,
MusicBrainz IDs).

	Fix another crash with non-ASCII characters in the configuration paths.

	Fix a divide-by-zero crash on zero-length audio files.

	Fix a crash in the chroma plugin when the Acoustid database had no
recording associated with a fingerprint.

	Fix a crash when an autotagging with an artist or album containing “AND” or
“OR” (upper case).

	Fix an error in the rewrite and inline plugins when the corresponding
config sections did not exist.

	Fix bitrate estimation for AAC files whose headers are missing the relevant
data.

	Fix the list command in BPD (thanks to Simon Chopin).

1.0b12 (January 16, 2012)

This release focuses on making beets’ path formatting vastly more powerful. It
adds a function syntax for transforming text. Via a new plugin, arbitrary Python
code can also be used to define new path format fields. Each path format
template can now be activated conditionally based on a query. Character set
substitutions are also now configurable.

In addition, beets avoids problematic filename conflicts by appending numbers to
filenames that would otherwise conflict. Three new plugins (inline,
scrub, and rewrite) are included in this release.

	Functions in path formats provide a simple way to write complex file
naming rules: for example, %upper{%left{$artist,1}} will insert the
capitalized first letter of the track’s artist. For more details, see
Path Formats. If you’re interested in adding your own template
functions via a plugin, see Writing Plugins.

	Plugins can also now define new path fields in addition to functions.

	The new Inline Plugin lets you use Python expressions to customize
path formats by defining new fields in the config file.

	The configuration can condition path formats based on queries. That is,
you can write a path format that is only used if an item matches a given
query. (This supersedes the earlier functionality that only allowed
conditioning on album type; if you used this feature in a previous version,
you will need to replace, for example, soundtrack: with
albumtype_soundtrack:.) See Path Format Configuration.

	Filename substitutions are now configurable via the replace config
value. You can choose which characters you think should be allowed in your
directory and music file names. See Configuration.

	Beets now ensures that files have unique filenames by appending a number
to any filename that would otherwise conflict with an existing file.

	The new Scrub Plugin can remove extraneous metadata either manually
or automatically.

	The new Rewrite Plugin can canonicalize names for path formats.

	The autotagging heuristics have been tweaked in situations where the
MusicBrainz database did not contain track lengths. Previously, beets
penalized matches where this was the case, leading to situations where
seemingly good matches would have poor similarity. This penalty has been
removed.

	Fix an incompatibility in BPD with libmpc (the library that powers mpc and
ncmpc).

	Fix a crash when importing a partial match whose first track was missing.

	The lastgenre plugin now correctly writes discovered genres to imported
files (when tag-writing is enabled).

	Add a message when skipping directories during an incremental import.

	The default ignore settings now ignore all files beginning with a dot.

	Date values in path formats ($year, $month, and $day) are now
appropriately zero-padded.

	Removed the --path-format global flag for beet.

	Removed the lastid plugin, which was deprecated in the previous version.

1.0b11 (December 12, 2011)

This version of beets focuses on transitioning the autotagger to the new version
of the MusicBrainz database (called NGS). This transition brings with it a
number of long-overdue improvements: most notably, predictable behavior when
tagging multi-disc albums and integration with the new Acoustid [http://acoustid.org/] acoustic
fingerprinting technology.

The importer can also now tag incomplete albums when you’re missing a few
tracks from a given release. Two other new plugins are also included with this
release: one for assigning genres and another for ReplayGain analysis.

	Beets now communicates with MusicBrainz via the new Next Generation Schema [http://musicbrainz.org/doc/XML_Web_Service/Version_2]
(NGS) service via python-musicbrainz-ngs [https://github.com/alastair/python-musicbrainz-ngs]. The bindings are included with
this version of beets, but a future version will make them an external
dependency.

	The importer now detects multi-disc albums and tags them together. Using a
heuristic based on the names of directories, certain structures are classified
as multi-disc albums: for example, if a directory contains subdirectories
labeled “disc 1” and “disc 2”, these subdirectories will be coalesced into a
single album for tagging.

	The new Chromaprint/Acoustid Plugin uses the Acoustid [http://acoustid.org/] open-source acoustic
fingerprinting service. This replaces the old lastid plugin, which used
Last.fm fingerprinting and is now deprecated. Fingerprinting with this library
should be faster and more reliable.

	The importer can now perform partial matches. This means that, if you’re
missing a few tracks from an album, beets can still tag the remaining tracks
as a single album. (Thanks to Simon Chopin [https://github.com/laarmen].)

	The new LastGenre Plugin automatically assigns genres to imported
albums and items based on Last.fm tags and an internal whitelist. (Thanks to
KraYmer [https://github.com/KraYmer].)

	The ReplayGain Plugin, written by Peter Brunner [https://github.com/Lugoues], has been merged
into the core beets distribution. Use it to analyze audio and adjust
playback levels in ReplayGain-aware music players.

	Albums are now tagged with their original release date rather than the date
of any reissue, remaster, “special edition”, or the like.

	The config file and library databases are now given better names and locations
on Windows. Namely, both files now reside in %APPDATA%; the config file is
named beetsconfig.ini and the database is called beetslibrary.blb
(neither has a leading dot as on Unix). For backwards compatibility, beets
will check the old locations first.

	When entering an ID manually during tagging, beets now searches for anything
that looks like an MBID in the entered string. This means that full
MusicBrainz URLs now work as IDs at the prompt. (Thanks to derwin.)

	The importer now ignores certain “clutter” files like .AppleDouble
directories and ._* files. The list of ignored patterns is configurable
via the ignore setting; see Configuration.

	The database now keeps track of files’ modification times so that, during
an update, unmodified files can be skipped. (Thanks to Jos van der Til.)

	The album art fetcher now uses albumart.org [http://www.albumart.org/] as a fallback when the Amazon
art downloader fails.

	A new timeout config value avoids database locking errors on slow systems.

	Fix a crash after using the “as Tracks” option during import.

	Fix a Unicode error when tagging items with missing titles.

	Fix a crash when the state file (~/.beetsstate) became emptied or
corrupted.

1.0b10 (September 22, 2011)

This version of beets focuses on making it easier to manage your metadata
after you’ve imported it. A bumper crop of new commands has been added: a
manual tag editor (modify), a tool to pick up out-of-band deletions and
modifications (update), and functionality for moving and copying files
around (move). Furthermore, the concept of “re-importing” is new: you can
choose to re-run beets’ advanced autotagger on any files you already have in
your library if you change your mind after you finish the initial import.

As a couple of added bonuses, imports can now automatically skip
previously-imported directories (with the -i flag) and there’s an
experimental Web interface to beets in a new standard
plugin.

	A new beet modify command enables manual, command-line-based
modification of music metadata. Pass it a query along with field=value
pairs that specify the changes you want to make.

	A new beet update command updates the database to reflect changes in the
on-disk metadata. You can now use an external program to edit tags on files,
remove files and directories, etc., and then run beet update to make sure
your beets library is in sync. This will also rename files to reflect their
new metadata.

	A new beet move command can copy or move files into your library
directory or to another specified directory.

	When importing files that are already in the library database, the items are
no longer duplicated—instead, the library is updated to reflect the new
metadata. This way, the import command can be transparently used as a
re-import.

	Relatedly, the -L flag to the “import” command makes it take a query as
its argument instead of a list of directories. The matched albums (or items,
depending on the -s flag) are then re-imported.

	A new flag -i to the import command runs incremental imports, keeping
track of and skipping previously-imported directories. This has the effect of
making repeated import commands pick up only newly-added directories. The
import_incremental config option makes this the default.

	When pruning directories, “clutter” files such as .DS_Store and
Thumbs.db are ignored (and removed with otherwise-empty directories).

	The Web Plugin encapsulates a simple Web-based GUI for beets. The
current iteration can browse the library and play music in browsers that
support HTML5 Audio [http://www.w3.org/TR/html-markup/audio.html].

	When moving items that are part of an album, the album art implicitly moves
too.

	Files are no longer silently overwritten when moving and copying files.

	Handle exceptions thrown when running Mutagen.

	Fix a missing __future__ import in embed art on Python 2.5.

	Fix ID3 and MPEG-4 tag names for the album-artist field.

	Fix Unicode encoding of album artist, album type, and label.

	Fix crash when “copying” an art file that’s already in place.

1.0b9 (July 9, 2011)

This release focuses on a large number of small fixes and improvements that turn
beets into a well-oiled, music-devouring machine. See the full release notes,
below, for a plethora of new features.

	Queries can now contain whitespace. Spaces passed as shell arguments are
now preserved, so you can use your shell’s escaping syntax (quotes or
backslashes, for instance) to include spaces in queries. For example,
typing``beet ls “the knife”`` or beet ls the\ knife. Read more in
Queries.

	Queries can match items from the library by directory. A path: prefix
is optional; any query containing a path separator (/ on POSIX systems) is
assumed to be a path query. Running beet ls path/to/music will show all
the music in your library under the specified directory. The
Queries reference again has more details.

	Local album art is now automatically discovered and copied from the
imported directories when available.

	When choosing the “as-is” import album (or doing a non-autotagged import),
every album either has an “album artist” set or is marked as a compilation
(Various Artists). The choice is made based on the homogeneity of the
tracks’ artists. This prevents compilations that are imported as-is from being
scattered across many directories after they are imported.

	The release label for albums and tracks is now fetched from !MusicBrainz,
written to files, and stored in the database.

	The “list” command now accepts a -p switch that causes it to show
paths instead of titles. This makes the output of beet ls -p suitable
for piping into another command such as xargs [http://en.wikipedia.org/wiki/xargs].

	Release year and label are now shown in the candidate selection list to help
disambiguate different releases of the same album.

	Prompts in the importer interface are now colorized for easy reading. The
default option is always highlighted.

	The importer now provides the option to specify a MusicBrainz ID manually if
the built-in searching isn’t working for a particular album or track.

	$bitrate in path formats is now formatted as a human-readable kbps value
instead of as a raw integer.

	The import logger has been improved for “always-on” use. First, it is now
possible to specify a log file in .beetsconfig. Also, logs are now appended
rather than overwritten and contain timestamps.

	Album art fetching and plugin events are each now run in separate pipeline
stages during imports. This should bring additional performance when using
album art plugins like embedart or beets-lyrics.

	Accents and other Unicode decorators on characters are now treated more fairly
by the autotagger. For example, if you’re missing the acute accent on the “e”
in “café”, that change won’t be penalized. This introduces a new dependency
on the unidecode [http://pypi.python.org/pypi/Unidecode/0.04.1] Python module.

	When tagging a track with no title set, the track’s filename is now shown
(instead of nothing at all).

	The bitrate of lossless files is now calculated from their file size (rather
than being fixed at 0 or reflecting the uncompressed audio bitrate).

	Fixed a problem where duplicate albums or items imported at the same time
would fail to be detected.

	BPD now uses a persistent “virtual filesystem” in order to fake a directory
structure. This means that your path format settings are respected in BPD’s
browsing hierarchy. This may come at a performance cost, however. The virtual
filesystem used by BPD is available for reuse by plugins (e.g., the FUSE
plugin).

	Singleton imports (beet import -s) can now take individual files as
arguments as well as directories.

	Fix Unicode queries given on the command line.

	Fix crasher in quiet singleton imports (import -qs).

	Fix crash when autotagging files with no metadata.

	Fix a rare deadlock when finishing the import pipeline.

	Fix an issue that was causing mpdupdate to run twice for every album.

	Fix a bug that caused release dates/years not to be fetched.

	Fix a crasher when setting MBIDs on MP3s file metadata.

	Fix a “broken pipe” error when piping beets’ standard output.

	A better error message is given when the database file is unopenable.

	Suppress errors due to timeouts and bad responses from MusicBrainz.

	Fix a crash on album queries with item-only field names.

1.0b8 (April 28, 2011)

This release of beets brings two significant new features. First, beets now has
first-class support for “singleton” tracks. Previously, it was only really meant
to manage whole albums, but many of us have lots of non-album tracks to keep
track of alongside our collections of albums. So now beets makes it easy to tag,
catalog, and manipulate your individual tracks. Second, beets can now
(optionally) embed album art directly into file metadata rather than only
storing it in a “file on the side.” Check out the EmbedArt Plugin for
that functionality.

	Better support for singleton (non-album) tracks. Whereas beets previously
only really supported full albums, now it can also keep track of individual,
off-album songs. The “singleton” path format can be used to customize where
these tracks are stored. To import singleton tracks, provide the -s switch to
the import command or, while doing a normal full-album import, choose the “as
Tracks” (T) option to add singletons to your library. To list only singleton
or only album tracks, use the new singleton: query term: the query
singleton:true matches only singleton tracks; singleton:false matches
only album tracks. The lastid plugin has been extended to support
matching individual items as well.

	The importer/autotagger system has been heavily refactored in this release.
If anything breaks as a result, please get in touch or just file a bug.

	Support for album art embedded in files. A new EmbedArt Plugin
implements this functionality. Enable the plugin to automatically embed
downloaded album art into your music files’ metadata. The plugin also provides
the “embedart” and “extractart” commands for moving image files in and out of
metadata. See the wiki for more details. (Thanks, daenney!)

	The “distance” number, which quantifies how different an album’s current and
proposed metadata are, is now displayed as “similarity” instead. This should
be less noisy and confusing; you’ll now see 99.5% instead of 0.00489323.

	A new “timid mode” in the importer asks the user every time, even when it
makes a match with very high confidence. The -t flag on the command line
and the import_timid config option control this mode. (Thanks to mdecker
on GitHub!)

	The multithreaded importer should now abort (either by selecting aBort or by
typing ^C) much more quickly. Previously, it would try to get a lot of work
done before quitting; now it gives up as soon as it can.

	Added a new plugin event, album_imported, which is called every time an
album is added to the library. (Thanks, Lugoues!)

	A new plugin method, register_listener, is an imperative alternative to
the @listen decorator (Thanks again, Lugoues!)

	In path formats, $albumartist now falls back to $artist (as well as
the other way around).

	The importer now prints “(unknown album)” when no tags are present.

	When autotagging, “and” is considered equal to “&”.

	Fix some crashes when deleting files that don’t exist.

	Fix adding individual tracks in BPD.

	Fix crash when ~/.beetsconfig does not exist.

1.0b7 (April 5, 2011)

Beta 7’s focus is on better support for “various artists” releases. These albums
can be treated differently via the new [paths] config section and the
autotagger is better at handling them. It also includes a number of
oft-requested improvements to the beet command-line tool, including several
new configuration options and the ability to clean up empty directory subtrees.

	“Various artists” releases are handled much more gracefully. The
autotagger now sets the comp flag on albums whenever the album is
identified as a “various artists” release by !MusicBrainz. Also, there is now
a distinction between the “album artist” and the “track artist”, the latter of
which is never “Various Artists” or other such bogus stand-in. (Thanks to
Jonathan for the bulk of the implementation work on this feature!)

	The directory hierarchy can now be customized based on release type. In
particular, the path_format setting in .beetsconfig has been replaced with
a new [paths] section, which allows you to specify different path formats
for normal and “compilation” (various artists) releases as well as for each
album type (see below). The default path formats have been changed to use
$albumartist instead of $artist.

	A new ``albumtype`` field reflects the release type as specified by
MusicBrainz [http://wiki.musicbrainz.org/ReleaseType].

	When deleting files, beets now appropriately “prunes” the directory
tree—empty directories are automatically cleaned up. (Thanks to
wlof on GitHub for this!)

	The tagger’s output now always shows the album directory that is currently
being tagged. This should help in situations where files’ current tags are
missing or useless.

	The logging option (-l) to the import command now logs duplicate
albums.

	A new import_resume configuration option can be used to disable the
importer’s resuming feature or force it to resume without asking. This option
may be either yes, no, or ask, with the obvious meanings. The
-p and -P command-line flags override this setting and correspond to
the “yes” and “no” settings.

	Resuming is automatically disabled when the importer is in quiet (-q)
mode. Progress is still saved, however, and the -p flag (above) can be
used to force resuming.

	The BEETSCONFIG environment variable can now be used to specify the
location of the config file that is at ~/.beetsconfig by default.

	A new import_quiet_fallback config option specifies what should
happen in quiet mode when there is no strong recommendation. The options are
skip (the default) and “asis”.

	When importing with the “delete” option and importing files that are already
at their destination, files could be deleted (leaving zero copies afterward).
This is fixed.

	The version command now lists all the loaded plugins.

	A new plugin, called info, just prints out audio file metadata.

	Fix a bug where some files would be erroneously interpreted as MPEG-4 audio.

	Fix permission bits applied to album art files.

	Fix malformed !MusicBrainz queries caused by null characters.

	Fix a bug with old versions of the Monkey’s Audio format.

	Fix a crash on broken symbolic links.

	Retry in more cases when !MusicBrainz servers are slow/overloaded.

	The old “albumify” plugin for upgrading databases was removed.

1.0b6 (January 20, 2011)

This version consists primarily of bug fixes and other small improvements. It’s
in preparation for a more feature-ful release in beta 7. The most important
issue involves correct ordering of autotagged albums.

	Quiet import: a new “-q” command line switch for the import command
suppresses all prompts for input; it pessimistically skips all albums that the
importer is not completely confident about.

	Added support for the WavPack and Musepack formats. Unfortunately, due
to a limitation in the Mutagen library (used by beets for metadata
manipulation), Musepack SV8 is not yet supported. Here’s the upstream bug [http://code.google.com/p/mutagen/issues/detail?id=7]
in question.

	BPD now uses a pure-Python socket library and no longer requires
eventlet/greenlet (the latter of which is a C extension). For the curious, the
socket library in question is called Bluelet [https://github.com/sampsyo/bluelet].

	Non-autotagged imports are now resumable (just like autotagged imports).

	Fix a terrible and long-standing bug where track orderings were never applied.
This manifested when the tagger appeared to be applying a reasonable ordering
to the tracks but, later, the database reflects a completely wrong association
of track names to files. The order applied was always just alphabetical by
filename, which is frequently but not always what you want.

	We now use Windows’ “long filename” support. This API is fairly tricky,
though, so some instability may still be present—please file a bug if you
run into pathname weirdness on Windows. Also, filenames on Windows now never
end in spaces.

	Fix crash in lastid when the artist name is not available.

	Fixed a spurious crash when LANG or a related environment variable is set
to an invalid value (such as 'UTF-8' on some installations of Mac OS X).

	Fixed an error when trying to copy a file that is already at its destination.

	When copying read-only files, the importer now tries to make the copy
writable. (Previously, this would just crash the import.)

	Fixed an UnboundLocalError when no matches are found during autotag.

	Fixed a Unicode encoding error when entering special characters into the
“manual search” prompt.

	Added `` beet version`` command that just shows the current release version.

1.0b5 (September 28, 2010)

This version of beets focuses on increasing the accuracy of the autotagger. The
main addition is an included plugin that uses acoustic fingerprinting to match
based on the audio content (rather than existing metadata). Additional
heuristics were also added to the metadata-based tagger as well that should make
it more reliable. This release also greatly expands the capabilities of beets’
plugin API. A host of other little features and fixes
are also rolled into this release.

	The lastid plugin adds Last.fm acoustic fingerprinting
support to the autotagger. Similar to the PUIDs used by !MusicBrainz Picard,
this system allows beets to recognize files that don’t have any metadata at
all. You’ll need to install some dependencies for this plugin to work.

	To support the above, there’s also a new system for extending the autotagger
via plugins. Plugins can currently add components to the track and album
distance functions as well as augment the MusicBrainz search. The new API is
documented at Plugins.

	String comparisons in the autotagger have been augmented to act more
intuitively. Previously, if your album had the title “Something (EP)” and it
was officially called “Something”, then beets would think this was a fairly
significant change. It now checks for and appropriately reweights certain
parts of each string. As another example, the title “The Great Album” is
considered equal to “Great Album, The”.

	New event system for plugins (thanks, Jeff!). Plugins can now get
callbacks from beets when certain events occur in the core. Again, the API is
documented in Plugins.

	The BPD plugin is now disabled by default. This greatly simplifies
installation of the beets core, which is now 100% pure Python. To use BPD,
though, you’ll need to set plugins: bpd in your .beetsconfig.

	The import command can now remove original files when it copies items into
your library. (This might be useful if you’re low on disk space.) Set the
import_delete option in your .beetsconfig to yes.

	Importing without autotagging (beet import -A) now prints out album names
as it imports them to indicate progress.

	The new MPDUpdate Plugin will automatically update your MPD server’s
index whenever your beets library changes.

	Efficiency tweak should reduce the number of !MusicBrainz queries per
autotagged album.

	A new -v command line switch enables debugging output.

	Fixed bug that completely broke non-autotagged imports (import -A).

	Fixed bug that logged the wrong paths when using import -l.

	Fixed autotagging for the creatively-named band !!! [http://musicbrainz.org/artist/f26c72d3-e52c-467b-b651-679c73d8e1a7.html].

	Fixed normalization of relative paths.

	Fixed escaping of / characters in paths on Windows.

1.0b4 (August 9, 2010)

This thrilling new release of beets focuses on making the tagger more usable in
a variety of ways. First and foremost, it should now be much faster: the tagger
now uses a multithreaded algorithm by default (although, because the new tagger
is experimental, a single-threaded version is still available via a config
option). Second, the tagger output now uses a little bit of ANSI terminal
coloring to make changes stand out. This way, it should be faster to decide what
to do with a proposed match: the more red you see, the worse the match is.
Finally, the tagger can be safely interrupted (paused) and restarted later at
the same point. Just enter b for aBort at any prompt to stop the tagging
process and save its progress. (The progress-saving also works in the
unthinkable event that beets crashes while tagging.)

Among the under-the-hood changes in 1.0b4 is a major change to the way beets
handles paths (filenames). This should make the whole system more tolerant to
special characters in filenames, but it may break things (especially databases
created with older versions of beets). As always, let me know if you run into
weird problems with this release.

Finally, this release’s setup.py should install a beet.exe startup stub
for Windows users. This should make running beets much easier: just type
beet if you have your PATH environment variable set up correctly. The
Getting Started guide has some tips on installing beets on Windows.

Here’s the detailed list of changes:

	Parallel tagger. The autotagger has been reimplemented to use multiple
threads. This means that it can concurrently read files from disk, talk to the
user, communicate with MusicBrainz, and write data back to disk. Not only does
this make the tagger much faster because independent work may be performed in
parallel, but it makes the tagging process much more pleasant for large
imports. The user can let albums queue up in the background while making a
decision rather than waiting for beets between each question it asks. The
parallel tagger is on by default but a sequential (single- threaded) version
is still available by setting the threaded config value to no (because
the parallel version is still quite experimental).

	Colorized tagger output. The autotagger interface now makes it a little
easier to see what’s going on at a glance by highlighting changes with
terminal colors. This feature is on by default, but you can turn it off by
setting color to no in your .beetsconfig (if, for example, your
terminal doesn’t understand colors and garbles the output).

	Pause and resume imports. The import command now keeps track of its
progress, so if you’re interrupted (beets crashes, you abort the process, an
alien devours your motherboard, etc.), beets will try to resume from the point
where you left off. The next time you run import on the same directory, it
will ask if you want to resume. It accomplishes this by “fast-forwarding”
through the albums in the directory until it encounters the last one it saw.
(This means it might fail if that album can’t be found.) Also, you can now
abort the tagging process by entering b (for aBort) at any of the prompts.

	Overhauled methods for handling fileystem paths to allow filenames that have
badly encoded special characters. These changes are pretty fragile, so please
report any bugs involving UnicodeError or SQLite ProgrammingError
messages in this version.

	The destination paths (the library directory structure) now respect
album-level metadata. This means that if you have an album in which two tracks
have different album-level attributes (like year, for instance), they will
still wind up in the same directory together. (There’s currently not a very
smart method for picking the “correct” album-level metadata, but we’ll fix
that later.)

	Fixed a bug where the CLI would fail completely if the LANG environment
variable was not set.

	Fixed removal of albums (beet remove -a): previously, the album record
would stay around although the items were deleted.

	The setup script now makes a beet.exe startup stub on Windows; Windows
users can now just type beet at the prompt to run beets.

	Fixed an occasional bug where Mutagen would complain that a tag was already
present.

	Fixed a bug with reading invalid integers from ID3 tags.

	The tagger should now be a little more reluctant to reorder tracks that
already have indices.

1.0b3 (July 22, 2010)

This release features two major additions to the autotagger’s functionality:
album art fetching and MusicBrainz ID tags. It also contains some important
under-the-hood improvements: a new plugin architecture is introduced
and the database schema is extended with explicit support for albums.

This release has one major backwards-incompatibility. Because of the new way
beets handles albums in the library, databases created with an old version of
beets might have trouble with operations that deal with albums (like the -a
switch to beet list and beet remove, as well as the file browser for
BPD). To “upgrade” an old database, you can use the included albumify plugin
(see the fourth bullet point below).

	Album art. The tagger now, by default, downloads album art from Amazon
that is referenced in the MusicBrainz database. It places the album art
alongside the audio files in a file called (for example) cover.jpg. The
import_art config option controls this behavior, as do the -r and
-R options to the import command. You can set the name (minus extension)
of the album art file with the art_filename config option. (See
Configuration for more information about how to configure the album
art downloader.)

	Support for MusicBrainz ID tags. The autotagger now keeps track of the
MusicBrainz track, album, and artist IDs it matched for each file. It also
looks for album IDs in new files it’s importing and uses those to look up data
in MusicBrainz. Furthermore, track IDs are used as a component of the tagger’s
distance metric now. (This obviously lays the groundwork for a utility that
can update tags if the MB database changes, but that’s for the future [http://code.google.com/p/beets/issues/detail?id=69].)
Tangentially, this change required the database code to support a lightweight
form of migrations so that new columns could be added to old databases–this
is a delicate feature, so it would be very wise to make a backup of your
database before upgrading to this version.

	Plugin architecture. Add-on modules can now add new commands to the beets
command-line interface. The bpd and dadd commands were removed from
the beets core and turned into plugins; BPD is loaded by default. To load the
non-default plugins, use the config options plugins (a space-separated
list of plugin names) and pluginpath (a colon-separated list of
directories to search beyond sys.path). Plugins are just Python modules
under the beetsplug namespace package containing subclasses of
beets.plugins.BeetsPlugin. See the beetsplug directory [http://code.google.com/p/beets/source/browse/#hg/beetsplug] for examples or
Plugins for instructions.

	As a consequence of adding album art, the database was significantly
refactored to keep track of some information at an album (rather than item)
granularity. Databases created with earlier versions of beets should work
fine, but they won’t have any “albums” in them–they’ll just be a bag of
items. This means that commands like beet ls -a and beet rm -a won’t
match anything. To “upgrade” your database, you can use the included
albumify plugin. Running beets albumify with the plugin activated (set
plugins=albumify in your config file) will group all your items into
albums, making beets behave more or less as it did before.

	Fixed some bugs with encoding paths on Windows. Also, : is now replaced
with - in path names (instead of _) for readability.

	MediaFile``s now have a ``format attribute, so you can use $format in
your library path format strings like $artist - $album ($format) to get
directories with names like Paul Simon - Graceland (FLAC).

Beets also now has its first third-party plugin: beetfs [http://code.google.com/p/beetfs/], by Martin Eve! It
exposes your music in a FUSE filesystem using a custom directory structure. Even
cooler: it lets you keep your files intact on-disk while correcting their tags
when accessed through FUSE. Check it out!

1.0b2 (July 7, 2010)

This release focuses on high-priority fixes and conspicuously missing features.
Highlights include support for two new audio formats (Monkey’s Audio and Ogg
Vorbis) and an option to log untaggable albums during import.

	Support for Ogg Vorbis and Monkey’s Audio files and their tags. (This
support should be considered preliminary: I haven’t tested it heavily because
I don’t use either of these formats regularly.)

	An option to the beet import command for logging albums that are
untaggable (i.e., are skipped or taken “as-is”). Use beet import -l
LOGFILE PATHS. The log format is very simple: it’s just a status (either
“skip” or “asis”) followed by the path to the album in question. The idea is
that you can tag a large collection and automatically keep track of the albums
that weren’t found in MusicBrainz so you can come back and look at them later.

	Fixed a UnicodeEncodeError on terminals that don’t (or don’t claim to)
support UTF-8.

	Importing without autotagging (beet import -A) is now faster and doesn’t
print out a bunch of whitespace. It also lets you specify single files on the
command line (rather than just directories).

	Fixed importer crash when attempting to read a corrupt file.

	Reorganized code for CLI in preparation for adding pluggable subcommands. Also
removed dependency on the aging cmdln module in favor of a hand-rolled
solution [http://gist.github.com/462717].

1.0b1 (June 17, 2010)

Initial release.

 Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 	1.0b15

 	1.0b14

 Navigation

 	
 index

 	beets 1.1.0 documentation

Index

 Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 	1.0b15

 	1.0b14

 _static/minus.png

plugins/lastgenre.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

LastGenre Plugin

The MusicBrainz database does not contain genre information [http://musicbrainz.org/doc/General_FAQ#Why_does_MusicBrainz_not_support_genre_information.3F]. Therefore, when
importing and autotagging music, beets does not assign a genre. The
lastgenre plugin fetches tags from Last.fm [http://last.fm/] and assigns them as genres
to your albums and items. The plugin is included with beets as of version
1.0b11.

The plugin requires pylast [http://code.google.com/p/pylast/], which you can install using pip [http://www.pip-installer.org/] by typing:

pip install pylast

After you have pylast installed, enable the plugin by putting lastgenre on
your plugins line in config file.

The plugin chooses genres based on a whitelist, meaning that only certain
tags can be considered genres. This way, tags like “my favorite music” or “seen
live” won’t be considered genres. The plugin ships with a fairly extensive
internal whitelist, but you can set your own in the config file using the
whitelist configuration value:

lastgenre:
 whitelist: /path/to/genres.txt

The genre list file should contain one genre per line. Blank lines are ignored.
For the curious, the default genre list is generated by a script that scrapes
Wikipedia [https://gist.github.com/1241307].

By default, beets will always fetch new genres, even if the files already have
once. To instead leave genres in place in when they pass the whitelist, set
the force option to “no”.

If no genre is found, the file will be left unchanged. To instead specify a
fallback genre, use the fallback configuration option. You can, of
course, use the empty string as a fallback, like so:

lastgenre:
 fallback: ''

Canonicalization

The plugin can also canonicalize genres, meaning that more obscure genres can
be turned into coarser-grained ones that are present in the whitelist. This
works using a tree of nested genre names, represented using YAML [http://www.yaml.org/], where the
leaves of the tree represent the most specific genres.

To enable canonicalization, set the canonical configuration value:

lastgenre:
 canonical: ''

Setting this value to the empty string will use a built-in canonicalization
tree. You can also set it to a path, just like the whitelist config value,
to use your own tree.

Genre Source

When looking up genres for albums or individual tracks, you can choose whether
to use Last.fm tags on the album, the artist, or the track. For example, you
might want all the albums for a certain artist to carry the same genre. Set the
source configuration value to “album”, “track”, or “artist”, like so:

lastgenre:
 source: artist

The default is “album”. When set to “track”, the plugin will fetch both
album-level and track-level genres for your music when importing albums.

Running Manually

In addition to running automatically on import, the plugin can also run manually
from the command line. Use the command beet lastgenre [QUERY] to fetch
genres for albums matching a certain query.

To disable automatic genre fetching on import, set the auto config option
to false.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

search.html

 Navigation

 		
 index

 		beets 1.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

_static/comment-close.png

_static/up-pressed.png

plugins/replaygain.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

ReplayGain Plugin

This plugin adds support for ReplayGain [http://wiki.hydrogenaudio.org/index.php?title=ReplayGain], a technique for normalizing audio
playback levels.

Installation

This plugin uses the mp3gain [http://mp3gain.sourceforge.net/download.php] command-line tool or the aacgain [http://aacgain.altosdesign.com] fork
thereof. To get started, install this tool:

		On Mac OS X, you can use Homebrew [http://mxcl.github.com/homebrew/]. Type brew install aacgain.

		On Linux, mp3gain [http://mp3gain.sourceforge.net/download.php] is probably in your repositories. On Debian or Ubuntu,
for example, you can run apt-get install mp3gain.

		On Windows, download and install the original mp3gain [http://mp3gain.sourceforge.net/download.php].

Then enable the replaygain plugin (see Configuration). If beets
doesn’t automatically find the mp3gain or aacgain executable, you can
configure the path explicitly like so:

replaygain:
 command: /Applications/MacMP3Gain.app/Contents/Resources/aacgain

Usage & Configuration

The plugin will automatically analyze albums and individual tracks as you import
them. It writes tags to each file according to the ReplayGain [http://wiki.hydrogenaudio.org/index.php?title=ReplayGain] specification;
if your player supports these tags, it can use them to do level adjustment.

By default, files that already have ReplayGain tags will not be re-analyzed. If
you want to analyze every file on import, you can set the overwrite option
for the plugin in your configuration file, like so:

replaygain:
 overwrite: yes

The target level can be modified to any target dB with the targetlevel
option (default: 89 dB).

When analyzing albums, this plugin can calculates an “album gain” alongside
individual track gains. Album gain normalizes an entire album’s loudness while
allowing the dynamics from song to song on the album to remain intact. This is
especially important for classical music albums with large loudness ranges.
Players can choose which gain (track or album) to honor. By default, only
per-track gains are used; to calculate album gain also, set the albumgain
option to yes.

If you use a player that does not support ReplayGain specifications, you can
force the volume normalization by applying the gain to the file via the
apply option. This is a lossless and reversible operation with no
transcoding involved. The use of ReplayGain can cause clipping if the average
volume of a song is below the target level. By default, a “prevent clipping”
option named noclip is enabled to reduce the amount of ReplayGain adjustment
to whatever amount would keep clipping from occurring.

Manual Analysis

By default, the plugin will analyze all items an albums as they are implemented.
However, you can also manually analyze files that are already in your library.
Use the beet replaygain command:

$ beet replaygain [-a] [QUERY]

The -a flag analyzes whole albums instead of individual tracks. Provide a
query (see Queries) to indicate which items or albums to
analyze.

ReplayGain analysis is not fast, so you may want to disable it during import.
Use the auto config option to control this:

replaygain:
 auto: no

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/chroma.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

Chromaprint/Acoustid Plugin

Acoustic fingerprinting is a technique for identifying songs from the way they
“sound” rather from their existing metadata. That means that beets’ autotagger
can theoretically use fingerprinting to tag files that don’t have any ID3
information at all (or have completely incorrect data). This plugin uses an
open-source fingerprinting technology called Chromaprint [http://acoustid.org/chromaprint] and its associated
Web service, called Acoustid [http://acoustid.org/].

Turning on fingerprinting can increase the accuracy of the
autotagger—especially on files with very poor metadata—but it comes at a
cost. First, it can be trickier to set up than beets itself (you need to set up
the native fingerprinting library, whereas all of the beets core is written in
pure Python). Also, fingerprinting takes significantly more CPU and memory than
ordinary tagging—which means that imports will go substantially slower.

If you’re willing to pay the performance cost for fingerprinting, read on!

Installing Dependencies

To get fingerprinting working, you’ll need to install three things: the
Chromaprint [http://acoustid.org/chromaprint] library or command-line tool, an audio decoder, and the
pyacoustid [http://github.com/sampsyo/pyacoustid] Python library (version 0.6 or later).

First, you will need to install Chromaprint [http://acoustid.org/chromaprint], either as a dynamic library or
in the form of a command-line tool (fpcalc). The Chromaprint site has links
to packages for major Linux distributions. If you use Homebrew [http://mxcl.github.com/homebrew/] on Mac OS X,
you can install the library with brew install chromaprint. Otherwise, on Mac
OS X and Windows, download the appropriate binary package and place the
fpcalc (or fpcalc.exe) on your shell search path (e.g., in
/usr/local/bin on Mac OS X or C:\\Program Files on Windows).

Next, you will need a mechanism for decoding audio files supported by the
audioread [https://github.com/sampsyo/audioread] library:

		Mac OS X has a number of decoders already built into Core Audio

		On Linux, you can install GStreamer for Python [http://gstreamer.freedesktop.org/modules/gst-python.html], FFmpeg [http://ffmpeg.org/], or MAD [http://spacepants.org/src/pymad/] and
pymad [http://www.underbit.com/products/mad/]. How you install these will depend on your distribution. For example,
on Ubuntu, run apt-get install python-gst0.10-dev. On Arch Linux, you want
pacman -S gstreamer0.10-python.

		On Windows, try the Gstreamer “WinBuilds” from the OSSBuild [http://code.google.com/p/ossbuild/] project.

To decode audio formats (MP3, FLAC, etc.) with GStreamer, you’ll need the
standard set of Gstreamer plugins. For example, on Ubuntu, install the packages
gstreamer0.10-plugins-good, gstreamer0.10-plugins-bad, and
gstreamer0.10-plugins-ugly.

Then, install pyacoustid itself. You can do this using pip [http://pip.openplans.org/], like so:

$ pip install pyacoustid

Using

Once you have all the dependencies sorted out, you can enable fingerprinting by
editing your configuration file. Put chroma on
your plugins: line. With that, beets will use fingerprinting the next time
you run beet import.

You can also use the beet fingerprint command to generate fingerprints for
items already in your library. (Provide a query to fingerprint a subset of your
library.) The generated fingerprints will be stored in the library database.
If you have the import.write config option enabled, they will also be
written to files’ metadata.

Submitting Fingerprints

You can help expand the Acoustid [http://acoustid.org/] database by submitting fingerprints for the
music in your collection. To do this, first get an API key [http://acoustid.org/api-key] from the Acoustid
service. Just use an OpenID or MusicBrainz account to log in and you’ll get a
short token string. Then, add the key to your config.yaml as the
value apikey in a section called acoustid like so:

acoustid:
 apikey: AbCd1234

Then, run beet submit. (You can also provide a query to submit a subset of
your library.) The command will use stored fingerprints if they’re available;
otherwise it will fingerprint each file before submitting it.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

_static/down.png

_static/comment.png

plugins/ihate.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

IHate Plugin

The ihate plugin allows you to automatically skip things you hate during
import or warn you about them. It supports album, artist and genre patterns.
There also is a whitelist to avoid skipping bands you still like. There are two
groups: warn and skip. The skip group is checked first. Whitelist overrides any
other patterns.

To use the plugin, enable it by including ihate in the plugins line of
your beets config. Then, add an ihate: section to your configuration file:

ihate:
 # you will be warned about these suspicious genres/artists (regexps):
 warn_genre=rnb soul power\smetal
 warn_artist=bad\band another\sbad\sband
 warn_album=tribute\sto
 # if you don't like a genre in general, but accept some band playing it,
 # add exceptions here:
 warn_whitelist=hate\sexception
 # never import any of this:
 skip_genre=russian\srock polka
 skip_artist=manowar
 skip_album=christmas
 # but import this:
 skip_whitelist=

Note: The plugin will trust your decision in ‘as-is’ mode.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

_static/ajax-loader.gif

plugins/info.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

Info Plugin

The info plugin provides a command that dumps the current tag values for
any file format supported by beets. It works like a supercharged version of
mp3info [http://www.ibiblio.org/mp3info/] or id3v2 [http://id3v2.sourceforge.net].

Enable the plugin and then type:

$ beet info /path/to/music.flac

and the plugin will enumerate all the tags in the specified file. It also
accepts multiple filenames in a single command-line.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/fetchart.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

FetchArt Plugin

The fetchart plugin retrieves album art images from various sources on the
Web and stores them as image files.

Fetching Album Art During Import

To automatically get album art for every album you import, just enable the
plugin by putting fetchart on your config file’s plugins line (see
Plugins).

By default, beets stores album art image files alongside the music files for an
album in a file called cover.jpg. To customize the name of this file, use
the art_filename config option.

To disable automatic art downloading, just put this in your configuration
file:

fetchart:
 auto: no

Manually Fetching Album Art

Use the fetchart command to download album art after albums have already
been imported:

$ beet fetchart [-f] [query]

By default, the command will only look for album art when the album doesn’t
already have it; the -f or --force switch makes it search for art
regardless. If you specify a query, only matching albums will be processed;
otherwise, the command processes every album in your library.

Image Resizing

A maximum image width can be configured as maxwidth to downscale fetched
images if they are too big. The resize operation reduces image width to
maxwidth pixels. The height is recomputed so that the aspect ratio is
preserved.

Beets can resize images using PIL [http://www.pythonware.com/products/pil/], ImageMagick [http://www.imagemagick.org/], or a server-side resizing
proxy. If either PIL or ImageMagick is installed, beets will use those;
otherwise, it falls back to the resizing proxy. If the resizing proxy is used,
no resizing is performed for album art found on the filesystem—only downloaded
art is resized. Server-side resizing can also be slower than local resizing, so
consider installing one of the two backends for better performance.

When using ImageMagic, beets looks for the convert executable in your path.
On some versions of Windows, the program can be shadowed by a system-provided
convert.exe. On these systems, you may need to modify your %PATH%
environment variable so that ImageMagick comes first or use PIL instead.

Album Art Sources

Currently, this plugin searches for art in the local filesystem as well as on
the Cover Art Archive, Amazon, and AlbumArt.org (in that order).

When looking for local album art, beets checks for image files located in the
same folder as the music files you’re importing. Beets prefers to use an image
file whose name contains “cover”, “front”, “art”, “album” or “folder”, but in
the absence of well-known names, it will use any image file in the same folder
as your music files.

You can change the list of filename keywords using the cover_names config
option. Or, to use only filenames containing the keywords and not fall back
to any image, set cautious to true. For example:

fetchart:
 cautious: true
 cover_names: front back

By default, remote (Web) art sources are only queried if no local art is found
in the filesystem. To query remote sources every time, set the
remote_priority configuration option to true, which will cause beets to
prefer remote cover art over any local image files.

When you choose to apply changes during an import, beets will search for art as
described above. For “as-is” imports (and non-autotagged imports using the
-A flag), beets only looks for art on the local filesystem.

Embedding Album Art

This plugin fetches album art but does not embed images into files’ tags. To do
that, use the EmbedArt Plugin. (You’ll want to have both plugins
enabled.)

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/fuzzy.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

Fuzzy Search Plugin

The fuzzy plugin provides a prefixed query that search you library using
fuzzy pattern matching. This can be useful if you want to find a track with
complicated characters in the title.

First, enable the plugin named fuzzy (see Plugins).
You’ll then be able to use the ~ prefix to use fuzzy matching:

$ beet ls '~Vareoldur'
Sigur Rós - Valtari - Varðeldur

The plugin provides config options that let you choose the prefix and the
threshold.:

fuzzy:
 threshold: 0.8
 prefix: '@'

A threshold value of 1.0 will show only perfect matches and a value of 0.0
will match everything.

The default prefix ~ needs to be escaped or quoted in most shells. If this
bothers you, you can change the prefix in your config file.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

_static/file.png

_images/beetsweb.png
®e0e6e beets

(<>][] (O iocalhost 8337

beets

all day
That's Right
Jump on Stage
OnandOn »
Get It Get It
Down for the Count
Make Me Wanna
Steady Shock
Triple Double

& (o) ;

Girl Talk

All Day (2010)

This Is the Remix
>

Track 5/12
Length 602
Format MP3
Bitrate 320 kbps
MusicBrainz entry view
File download
Comments Catalog #
1A123
Released

plugins/web.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

Web Plugin

The web plugin is a very basic alternative interface to beets that
supplements the CLI. It can’t do much right now, and the interface is a little
clunky, but you can use it to query and browse your music and—in browsers that
support HTML5 Audio—you can even play music.

While it’s not meant to replace the CLI, a graphical interface has a number of
advantages in certain situations. For example, when editing a tag, a natural CLI
makes you retype the whole thing—common GUI conventions can be used to just
edit the part of the tag you want to change. A graphical interface could also
drastically increase the number of people who can use beets.

Install

The Web interface depends on Flask [http://flask.pocoo.org/]. To get it, just run pip install
flask.

Put web on your plugins line in your configuration file to enable the
plugin.

Run the Server

Then just type beet web to start the server and go to
http://localhost:8337/. This is what it looks like:

[image: ../_images/beetsweb.png]
You can also specify the hostname and port number used by the Web server. These
can be specified on the command line or in the [web] section of your
configuration file.

On the command line, use beet web [HOSTNAME] [PORT]. In the config file, use
something like this:

web:
 host: 127.0.0.1
 port: 8888

Usage

Type queries into the little search box. Double-click a track to play it with
HTML5 Audio [http://www.w3.org/TR/html-markup/audio.html].

Implementation

The Web backend is built using a simple REST+JSON API with the excellent
Flask [http://flask.pocoo.org/] library. The frontend is a single-page application written with
Backbone.js [http://documentcloud.github.com/backbone/]. This allows future non-Web clients to use the same backend API.

Eventually, to make the Web player really viable, we should use a Flash fallback
for unsupported formats/browsers. There are a number of options for this:

		audio.js [http://kolber.github.com/audiojs/]

		html5media [http://html5media.info/]

		MediaElement.js [http://mediaelementjs.com/]

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/mbsync.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

MBSync Plugin

This plugin provides the mbsync command, which lets you fetch metadata
from MusicBrainz for albums and tracks that already have MusicBrainz IDs. This
is useful for updating tags as they are fixed in the MusicBrainz database, or
when you change your mind about some config options that change how tags are
written to files. If you have a music library that is already nicely tagged by
a program that also uses MusicBrainz like Picard, this can speed up the
initial import if you just import “as-is” and then use mbsync to get
up-to-date tags that are written to the files according to your beets
configuration.

Usage

Enable the plugin and then run beet mbsync QUERY to fetch updated metadata
for a part of your collection (or omit the query to run over your whole
library).

This plugin treats albums and singletons (non-album tracks) separately. It
first processes all matching singletons and then proceeds on to full albums.
The same query is used to search for both kinds of entities.

The command has a few command-line options:

		To preview the changes that would be made without applying them, use the
-p (--pretend) flag.

		By default, files will be moved (renamed) according to their metadata if
they are inside your beets library directory. To disable this, use the
-M (--nomove) command-line option.

		If you have the import.write configuration option enabled, then this
plugin will write new metadata to files’ tags. To disable this, use the
-W (--nowrite) option.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/mbcollection.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

MusicBrainz Collection Plugin

The mbcollection plugin lets you submit your catalog to MusicBrainz to
maintain your music collection [http://musicbrainz.org/doc/Collections] list there.

To begin, just enable the mbcollection plugin (see Plugins).
Then, add your MusicBrainz username and password to your
configuration file under a musicbrainz section:

musicbrainz:
 user: you
 pass: seekrit

Then, use the beet mbupdate command to send your albums to MusicBrainz. The
command automatically adds all of your albums to the first collection it finds.
If you don’t have a MusicBrainz collection yet, you may need to add one to your
profile first.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

_static/down-pressed.png

plugins/bpd.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

BPD Plugin

BPD is a music player using music from a beets library. It runs as a daemon and
implements the MPD protocol, so it’s compatible with all the great MPD clients
out there. I’m using Theremin [https://theremin.sigterm.eu/], gmpc [http://gmpc.wikia.com/wiki/Gnome_Music_Player_Client], Sonata [http://sonata.berlios.de/], and Ario [http://ario-player.sourceforge.net/] successfully.

Dependencies

Before you can use BPD, you’ll need the media library called GStreamer (along
with its Python bindings) on your system.

		On Mac OS X, you can use MacPorts [http://www.macports.org/] or Homebrew [http://mxcl.github.com/homebrew/]. For MacPorts, just run
port install py27-gst-python. For Homebrew, use brew install
gst-python. (Note that you’ll need the Mac OS X Developer Tools in either
case.)

		On Linux, it’s likely that you already have gst-python. (If not, your
distribution almost certainly has a package for it.)

		On Windows, you may want to try GStreamer WinBuilds [http://www.gstreamer-winbuild.ylatuya.es/] (cavet emptor: I
haven’t tried this).

You will also need the various GStreamer plugin packages to make everything
work. See the Chromaprint/Acoustid Plugin documentation for more information on
installing GStreamer plugins.

Using and Configuring

BPD is a plugin for beets. It comes with beets, but it’s disabled by default.
To enable it, you’ll need to edit your configuration file and add bpd to your plugins: line.

Then, you can run BPD by invoking:

$ beet bpd

Fire up your favorite MPD client to start playing music. The MPD site has a
long list of available clients [http://mpd.wikia.com/wiki/Clients]. Here are my favorites:

		Linux: gmpc [http://gmpc.wikia.com/wiki/Gnome_Music_Player_Client], Sonata [http://sonata.berlios.de/]

		Mac: Theremin [https://theremin.sigterm.eu/]

		Windows: I don’t know. Get in touch if you have a recommendation.

		iPhone/iPod touch: MPoD [http://www.katoemba.net/makesnosenseatall/mpod/]

One nice thing about MPD’s (and thus BPD’s) client-server architecture is that
the client can just as easily on a different computer from the server as it can
be run locally. Control your music from your laptop (or phone!) while it plays
on your headless server box. Rad!

To configure the BPD server, add a bpd: section to your config.yaml
file. The configuration values, which are pretty self-explanatory, are host,
port, and password. Here’s an example:

bpd:
 host: 127.0.0.1
 port: 6600
 password: seekrit

Implementation Notes

In the real MPD, the user can browse a music directory as it appears on disk. In
beets, we like to abstract away from the directory structure. Therefore, BPD
creates a “virtual” directory structure (artist/album/track) to present to
clients. This is static for now and cannot be reconfigured like the real on-disk
directory structure can. (Note that an obvious solution to this is just string
matching on items’ destination, but this requires examining the entire library
Python-side for every query.)

We don’t currently support versioned playlists. Many clients, however, use
plchanges instead of playlistinfo to get the current playlist, so plchanges
contains a dummy implementation that just calls playlistinfo.

The stats command always send zero for playtime, which is supposed to
indicate the amount of time the server has spent playing music. BPD doesn’t
currently keep track of this.

The update command regenerates the directory tree from the beets database.

Unimplemented Commands

These are the commands from the MPD protocol [http://mpd.wikia.com/wiki/MusicPlayerDaemonCommands] that have not yet been
implemented in BPD.

Saved playlists:

		playlistclear

		playlistdelete

		playlistmove

		playlistadd

		playlistsearch

		listplaylist

		listplaylistinfo

		playlistfind

		rm

		save

		load

		rename

Deprecated:

		playlist

		volume

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/lyrics.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

Lyrics Plugin

The lyrics plugin fetches and stores song lyrics from databases on the Web.
Namely, the current version of the plugin uses Lyric Wiki [http://lyrics.wikia.com/], Lyrics.com [http://www.lyrics.com/],
and, optionally, the Google custom search API.

Fetch Lyrics During Import

To automatically fetch lyrics for songs you import, just enable the plugin by
putting lyrics on your config file’s plugins line (see
Plugins). When importing new files, beets will now fetch lyrics
for files that don’t already have them. The lyrics will be stored in the beets
database. If the import.write config option is on, then the lyrics will also
be written to the files’ tags.

This behavior can be disabled with the auto config option (see below).

Fetching Lyrics Manually

The lyrics command provided by this plugin fetches lyrics for items that
match a query (see Queries). For example, beet lyrics magnetic
fields absolutely cuckoo will get the lyrics for the appropriate Magnetic
Fields song, beet lyrics magnetic fields will get lyrics for all my tracks
by that band, and beet lyrics will get lyrics for my entire library. The
lyrics will be added to the beets database and, if import.write is on,
embedded into files’ metadata.

The -p option to the lyrics command makes it print lyrics out to the
console so you can view the fetched (or previously-stored) lyrics.

Configuring

To disable automatic lyric fetching during import, set the auto option to
false, like so:

lyrics:
 auto: no

By default, if no lyrics are found, the file will be left unchanged. To
specify a placeholder for the lyrics tag when none are found, use the
fallback configuration option:

lyrics:
 fallback: 'No lyrics found'

Activate Google custom search

Using the Google backend requires BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/bs4/doc/], which you can install
using pip [http://www.pip-installer.org/] by typing:

pip install beautifulsoup4

You also need to register for a Google API key [https://code.google.com/apis/console.]. Set the google_API_key
configuration option to your key. This enables the Google backend.

Optionally, you can define a custom search engine [http://www.google.com/cse/all]. Get your search engine’s
token and use it for your google_engine_ID configuration option. By
default, beets use a list of sources known to be scrapeable.

Here’s an example of config.yaml:

lyrics:
 google_API_key: AZERTYUIOPQSDFGHJKLMWXCVBN1234567890_ab
 google_engine_ID: 009217259823014548361:lndtuqkycfu

Note that the Google custom search API is limited to 100 queries per day.
After that, the lyrics plugin will fall back on its other data sources.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/embedart.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

EmbedArt Plugin

Typically, beets stores album art in a “file on the side”: along with each
album, there is a file (named “cover.jpg” by default) that stores the album art.
You might want to embed the album art directly into each file’s metadata. While
this will take more space than the external-file approach, it is necessary for
displaying album art in some media players (iPods, for example).

This plugin was added in beets 1.0b8.

Embedding Art Automatically

To automatically embed discovered album art into imported files, just enable the
plugin (see Plugins). You’ll also want to enable the
FetchArt Plugin to obtain the images to be embedded. Art will be
embedded after each album is added to the library.

This behavior can be disabled with the auto config option (see below).

Manually Embedding and Extracting Art

The embedart plugin provides a couple of commands for manually managing
embedded album art:

		beet embedart [-f IMAGE] QUERY: embed images into the every track on the
albums matching the query. If the -f (--file) option is given, then
use a specific image file from the filesystem; otherwise, each album embeds
its own currently associated album art.

		beet extractart [-o FILE] QUERY: extracts the image from an item matching
the query and stores it in a file. You can specify the destination file using
the -o option, but leave off the extension: it will be chosen
automatically. The destination filename defaults to cover if it’s not
specified.

		beet clearart QUERY: removes all embedded images from all items matching
the query. (Use with caution!)

Configuring

The auto option lets you disable automatic album art embedding.
To do so, add this to your config.yaml:

embedart:
 auto: no

A maximum image width can be configured as maxwidth to downscale images
before embedding them (the original image file is not altered). The resize
operation reduces image width to maxwidth pixels. The height is recomputed
so that the aspect ratio is preserved. PIL [http://www.pythonware.com/products/pil/] or ImageMagick [http://www.imagemagick.org/] is required to
use the maxwidth config option. See also Image Resizing for further
caveats about image resizing.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/random.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

Random Plugin

The random plugin provides a command that randomly selects tracks or albums
from your library. This can be helpful if you need some help deciding what to
listen to.

First, enable the plugin named random (see Plugins). You’ll then
be able to use the beet random command:

$ beet random
Aesop Rock - None Shall Pass - The Harbor Is Yours

The command has several options that resemble those for the beet list
command (see Command-Line Interface). To choose an album instead of a single
track, use -a; to print paths to items instead of metadata, use -p; and
to use a custom format for printing, use -f FORMAT.

The -n NUMBER option controls the number of objects that are selected and
printed (default 1). To select 5 tracks from your library, type beet random
-n5.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/rewrite.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

Rewrite Plugin

The rewrite plugin lets you easily substitute values in your path formats.
Specifically, it is intended to let you canonicalize names such as artists:
for example, perhaps you want albums from The Jimi Hendrix Experience to be
sorted into the same folder as solo Hendrix albums.

To use field rewriting, first enable the plugin by putting rewrite on your
plugins line. Then, make a rewrite: section in your config file to
contain your rewrite rules. Each rule consists of a field name, a regular
expression pattern, and a replacement value. Rules are written fieldname
regex: replacement. For example, this line implements the Jimi Hendrix
example above:

rewrite:
 artist The Jimi Hendrix Experience: Jimi Hendrix

This will make $artist in your path formats expand to “Jimi Henrix” where it
would otherwise be “The Jimi Hendrix Experience”.

The pattern is a case-insensitive regular expression. This means you can use
ordinary regular expression syntax to match multiple artists. For example, you
might use:

rewrite:
 artist .*jimi hendrix.*: Jimi Hendrix

As a convenience, the plugin applies patterns for the artist field to the
albumartist field as well. (Otherwise, you would probably want to duplicate
every rule for artist and albumartist.)

Note that this plugin only applies to path templating; it does not modify files’
metadata tags or the values tracked by beets’ library database.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

_static/comment-bright.png

plugins/importfeeds.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

ImportFeeds Plugin

The importfeeds plugin helps you keep track of newly imported music in your library.

To use the plugin, just put importfeeds on the plugins line in your
configuration file. Then set a few options under the
importfeeds: section in the config file.

The dir configuration option can be set to specify another folder
than the default library directory.

The relative_to configuration option can be set to make the m3u paths
relative to another folder than where the playlist is being written. If you’re
using importfeeds to generate a playlist for MPD, you should set this to the
root of your music library.

The absolute_path configuration option can be set to use absolute paths
instead of relative paths. Some applications may need this to work properly.

Three different types of outputs coexist, specify the ones you want to use by
setting the formats parameter:

		m3u: catalog the imports in a centralized playlist. By default, the playlist is named imported.m3u. To use a different file, just set the m3u_name parameter inside the importfeeds config section.

		m3u_multi: create a new playlist for each import (uniquely named by appending the date and track/album name).

		link: create a symlink for each imported item. This is the recommended setting to propagate beets imports to your iTunes library: just drag and drop the dir folder on the iTunes dock icon.

Here’s an example configuration for this plugin:

importfeeds:
 formats: m3u link
 dir: ~/imports/
 relative_to: ~/Music/
 m3u_name: newfiles.m3u

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/convert.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

Convert Plugin

The convert plugin lets you convert parts of your collection to a directory
of your choice. It converts all input formats supported by FFmpeg [http://ffmpeg.org] to MP3.
It will skip files that are already present in the target directory. Converted
files follow the same path formats as your library.

Installation

First, enable the convert plugin (see Plugins).

To transcode music, this plugin requires the ffmpeg command-line
tool. If its executable is in your path, it will be found automatically
by the plugin. Otherwise, configure the plugin to locate the executable:

convert:
 ffmpeg: /usr/bin/ffmpeg

Usage

To convert a part of your collection, run beet convert QUERY. This
will display all items matching QUERY and ask you for confirmation before
starting the conversion. The -a (or --album) option causes the command
to match albums instead of tracks.

The -t (--threads) and -d (--dest) options allow you to specify
or overwrite the respective configuration options.

By default, the command places converted files into the destination directory
and leaves your library pristine. To instead back up your original files into
the destination directory and keep converted files in your library, use the
-k (or --keep-new) option.

Configuration

The plugin offers several configuration options, all of which live under the
convert: section:

		dest sets the directory the files will be converted (or copied) to.
A destination is required—you either have to provide it in the config file
or on the command line using the -d flag.

		embed indicates whether or not to embed album art in converted items.
Default: true.

		If you set max_bitrate, all MP3 files with a higher bitrate will be
transcoded and those with a lower bitrate will simply be copied. Note that
this does not guarantee that all converted files will have a lower
bitrate—that depends on the encoder and its configuration. By default MP3s
will be copied without transcoding and all other formats will be converted.

		opts are the encoding options that are passed to ffmpeg. Default:
“-aq 2”. (Note that “-aq <num>” is equivalent to the LAME option “-V
<num>”.) If you want to specify a bitrate, use “-ab <bitrate>”. Refer to the
FFmpeg [http://ffmpeg.org] documentation for more details.

		auto gives you the option to import transcoded versions of your files
automatically during the import command. With this option enabled, the
importer will transcode all non-MP3 files over the maximum bitrate before
adding them to your library.

		Finally, threads determines the number of threads to use for parallel
encoding. By default, the plugin will detect the number of processors
available and use them all.

Here’s an example configuration:

convert:
 embed: false
 max_bitrate: 200
 opts: -aq 4
 dest: /home/user/MusicForPhone
 threads: 4

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/scrub.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

Scrub Plugin

The scrub plugin lets you remove extraneous metadata from files’ tags. If
you’d prefer never to see crufty tags that come from other tools, the plugin can
automatically remove all non-beets-tracked tags whenever a file’s metadata is
written to disk by removing the tag entirely before writing new data. The plugin
also provides a command that lets you manually remove files’ tags.

Automatic Scrubbing

To automatically remove files’ tags before writing new ones, just
enable the plugin (see Plugins). When importing new files (with
import.write turned on) or modifying files’ tags with the beet modify
command, beets will first strip all types of tags entirely and then write the
database-tracked metadata to the file.

This behavior can be disabled with the auto config option (see below).

Manual Scrubbing

The scrub command provided by this plugin removes tags from files and then
rewrites their database-tracked metadata. To run it, just type beet scrub
QUERY where QUERY matches the tracks to be scrubbed. Use this command with
caution, however, because any information in the tags that is out of sync with
the database will be lost.

The -W (or --nowrite) option causes the command to just remove tags but
not restore any information. This will leave the files with no metadata
whatsoever.

Configuring

The plugin has one configuration option, auto, which lets you disable
automatic metadata stripping. To do so, add this to your config.yaml:

scrub:
 auto: no

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/inline.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

Inline Plugin

The inline plugin lets you use Python to customize your path formats. Using
it, you can define template fields in your beets configuration file and refer
to them from your template strings in the [paths] section (see
Configuration).

To use inline field definitions, first enable the plugin by putting inline
on your plugins line in your configuration file. Then, make a
pathfields: block in your config file. Under this key, every line defines a
new template field; the key is the name of the field (you’ll use the name to
refer to the field in your templates) and the value is a Python expression or
function body. The Python code has all of a track’s fields in scope, so you can
refer to any normal attributes (such as artist or title) as Python
variables.

Here are a couple of examples of expressions:

pathfields:
 initial: albumartist[0].upper() + u'.'
 disc_and_track: u'%02i.%02i' % (disc, track) if
 disctotal > 1 else u'%02i' % (track)

Note that YAML syntax allows newlines in values if the subsequent lines are
indented.

These examples define $initial and $disc_and_track fields that can be
referenced in path templates like so:

paths:
 default: $initial/$artist/$album%aunique{}/$disc_and_track $title

If you need to use statements like import, you can write a Python function
body instead of a single expression. In this case, you’ll need to return
a result for the value of the path field, like so:

pathfields:
 filename: |
 import os
 from beets.util import bytestring_path
 return bytestring_path(os.path.basename(path))

You might want to use the YAML syntax for “block literals,” in which a leading
| character indicates a multi-line block of text.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/echonest_tempo.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

EchoNest Tempo Plugin

The echonest_tempo plugin fetches and stores a track’s tempo (the “bpm”
field) from the EchoNest API [http://developer.echonest.com/]

Installing Dependencies

This plugin requires the pyechonest library in order to talk to the EchoNest
API.

There are packages for most major linux distributions, you can download the
library from the Echo Nest, or you can install the library from pip [http://pip.openplans.org/],
like so:

$ pip install pyechonest

Configuring

Beets includes its own Echo Nest API key, but you can apply for your own [http://developer.echonest.com/account/register] for
free from the EchoNest. To specify your own API key, add the key to your
configuration file as the value for apikey under
the key echonest_tempo like so:

echonest_tempo:
 apikey: YOUR_API_KEY

In addition, the autofetch config option lets you disable automatic tempo
fetching during import. To do so, add this to your config.yaml:

echonest_tempo:
 auto: no

Fetch Tempo During Import

To automatically fetch the tempo for songs you import, just enable the plugin
by putting echonest_tempo on your config file’s plugins line (see
Plugins). When importing new files, beets will now fetch the
tempo for files that don’t already have them. The bpm field will be stored in
the beets database. If the import.write config option is on, then the tempo
will also be written to the files’ tags.

This behavior can be disabled with the autofetch config option (see below).

Fetching Tempo Manually

The tempo command provided by this plugin fetches tempos for
items that match a query (see Queries). For example,
beet tempo magnetic fields absolutely cuckoo will get the tempo for the
appropriate Magnetic Fields song, beet tempo magnetic fields will get
tempos for all my tracks by that band, and beet tempo will get tempos for
my entire library. The tempos will be added to the beets database and, if
import.write is on, embedded into files’ metadata.

The -p option to the tempo command makes it print tempos out to the
console so you can view the fetched (or previously-stored) tempos.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/the.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

The Plugin

The the plugin allows you to move patterns in path formats. It’s suitable,
for example, for moving articles from string start to the end. This is useful
for quick search on filesystems and generally looks good. Plugin DOES NOT
change tags. By default plugin supports English “the, a, an”, but custom
regexp patterns can be added by user. How it works:

The Something -> Something, The
A Band -> Band, A
An Orchestra -> Orchestra, An

To use plugin, enable it by including the into plugins line of your
beets config. The plugin provides a template function called %the for use
in path format expressions:

paths:
 default: %the{$albumartist}/($year) $album/$track $title

The default configuration moves all English articles to the end of the string,
but you can override these defaults to make more complex changes:

the:
 # handle "The" (on by default)
 the: yes
 # handle "A/An" (on by default)
 a: yes
 # format string, {0} - part w/o article, {1} - article
 # spaces already trimmed from ends of both parts
 # default is '{0}, {1}'
 format: '{0}, {1}'
 # strip instead of moving to the end, default is off
 strip: no
 # custom regexp patterns, space-separated
 patterns: ...

Custom patterns are case-insensitive regular expressions. Patterns can be
matched anywhere in the string (not just the beginning), so use ^ if you
intend to match leading words.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/zero.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

Zero Plugin

The zero plugin allows you to null fields in files’ metadata tags. Fields
can be nulled unconditionally or conditioned on a pattern match. For example,
the plugin can strip useless comments like “ripped by MyGreatRipper.” This
plugin only affects files’ tags; the beets database is unchanged.

To use plugin, enable it by including zero into plugins line of your
configuration file. To configure the plugin, use a zero: section in your
configuration file. Set fields to the (whitespace-separated) list of fields
to change. You can get the list of available fields by running beet fields.
To conditionally filter a field, use field: [regexp, regexp] to specify
regular expressions.

For example:

zero:
 fields: month day genre comments
 comments: [EAC, LAME, from.+collection, 'ripped by']
 genre: [rnb, 'power metal']

If custom pattern is not defined for a given field, the field will be nulled
unconditionally.

Note that the plugin currently does not zero fields when importing “as-is”.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

_static/up.png

plugins/writing.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

Writing Plugins

A beets plugin is just a Python module inside the beetsplug namespace
package. (Check out this Stack Overflow question about namespace packages [http://stackoverflow.com/questions/1675734/how-do-i-create-a-namespace-package-in-python/1676069#1676069] if
you haven’t heard of them.) So, to make one, create a directory called
beetsplug and put two files in it: one called __init__.py and one called
myawesomeplugin.py (but don’t actually call it that). Your directory
structure should look like this:

beetsplug/
 __init__.py
 myawesomeplugin.py

Then, you’ll need to put this stuff in __init__.py to make beetsplug a
namespace package:

from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

That’s all for __init__.py; you can can leave it alone. The meat of your
plugin goes in myawesomeplugin.py. There, you’ll have to import the
beets.plugins module and define a subclass of the BeetsPlugin class
found therein. Here’s a skeleton of a plugin file:

from beets.plugins import BeetsPlugin

class MyPlugin(BeetsPlugin):
 pass

Once you have your BeetsPlugin subclass, there’s a variety of things your
plugin can do. (Read on!)

To use your new plugin, make sure your beetsplug directory is in the Python
path (using PYTHONPATH or by installing in a virtualenv [http://pypi.python.org/pypi/virtualenv], for example).
Then, as described above, edit your config.yaml to include
plugins: myawesomeplugin (substituting the name of the Python module
containing your plugin).

Add Commands to the CLI

Plugins can add new subcommands to the beet command-line interface. Define
the plugin class’ commands() method to return a list of Subcommand
objects. (The Subcommand class is defined in the beets.ui module.)
Here’s an example plugin that adds a simple command:

from beets.plugins import BeetsPlugin
from beets.ui import Subcommand

my_super_command = Subcommand('super', help='do something super')
def say_hi(lib, opts, args):
 print "Hello everybody! I'm a plugin!"
my_super_command.func = say_hi

class SuperPlug(BeetsPlugin):
 def commands(self):
 return [my_super_command]

To make a subcommand, invoke the constructor like so: Subcommand(name, parser,
help, aliases). The name parameter is the only required one and should
just be the name of your command. parser can be an OptionParser instance [http://docs.python.org/library/optparse.html],
but it defaults to an empty parser (you can extend it later). help is a
description of your command, and aliases is a list of shorthand versions of
your command name.

You’ll need to add a function to your command by saying mycommand.func =
myfunction. This function should take the following parameters: lib (a
beets Library object) and opts and args (command-line options and
arguments as returned by OptionParser.parse_args [http://docs.python.org/library/optparse.html#parsing-arguments]).

The function should use any of the utility functions defined in beets.ui.
Try running pydoc beets.ui to see what’s available.

You can add command-line options to your new command using the parser member
of the Subcommand class, which is an OptionParser instance. Just use it
like you would a normal OptionParser in an independent script.

Listen for Events

Event handlers allow plugins to run code whenever something happens in beets’
operation. For instance, a plugin could write a log message every time an album
is successfully autotagged or update MPD’s index whenever the database is
changed.

You can “listen” for events using the BeetsPlugin.listen decorator. Here’s
an example:

from beets.plugins import BeetsPlugin

class SomePlugin(BeetsPlugin):
 pass

@SomePlugin.listen('pluginload')
def loaded():
 print 'Plugin loaded!'

Pass the name of the event in question to the listen decorator. The events
currently available are:

		pluginload: called after all the plugins have been loaded after the beet
command starts

		import: called after a beet import command finishes (the lib keyword
argument is a Library object; paths is a list of paths (strings) that were
imported)

		album_imported: called with an Album object every time the import
command finishes adding an album to the library. Parameters: lib,
album

		item_imported: called with an Item object every time the importer adds a
singleton to the library (not called for full-album imports). Parameters:
lib, item

		write: called with an Item object just before a file’s metadata is
written to disk (i.e., just before the file on disk is opened).

		import_task_start: called when before an import task begins processing.
Parameters: task (an ImportTask) and session (an ImportSession).

		import_task_apply: called after metadata changes have been applied in an
import task. Parameters: task and session.

		import_task_choice: called after a decision has been made about an import
task. This event can be used to initiate further interaction with the user.
Use task.choice_flag to determine the action to be taken. Parameters:
task and session.

		import_task_files: called after an import task finishes manipulating the
filesystem (copying and moving files, writing metadata tags). Parameters:
task and session.

		library_opened: called after beets starts up and initializes the main
Library object. Parameter: lib.

		database_change: a modification has been made to the library database. The
change might not be committed yet. Parameter: lib.

		cli_exit: called just before the beet command-line program exits.
Parameter: lib.

The included mpdupdate plugin provides an example use case for event listeners.

Extend the Autotagger

Plugins in can also enhance the functionality of the autotagger. For a
comprehensive example, try looking at the chroma plugin, which is included
with beets.

A plugin can extend three parts of the autotagger’s process: the track distance
function, the album distance function, and the initial MusicBrainz search. The
distance functions determine how “good” a match is at the track and album
levels; the initial search controls which candidates are presented to the
matching algorithm. Plugins implement these extensions by implementing three
methods on the plugin class:

		track_distance(self, item, info): adds a component to the distance
function (i.e., the similarity metric) for individual tracks. item is the
track to be matched (an Item object) and info is the TrackInfo object
that is proposed as a match. Should return a (dist, dist_max) pair
of floats indicating the distance.

		album_distance(self, items, album_info, mapping): like the above, but
compares a list of items (representing an album) to an album-level MusicBrainz
entry. items is a list of Item objects; album_info is an AlbumInfo
object; and mapping is a dictionary that maps Items to their corresponding
TrackInfo objects.

		candidates(self, items): given a list of items comprised by an album to be
matched, return a list of AlbumInfo objects for candidate albums to be
compared and matched.

		item_candidates(self, item): given a singleton item, return a list of
TrackInfo objects for candidate tracks to be compared and matched.

When implementing these functions, it will probably be very necessary to use the
functions from the beets.autotag and beets.autotag.mb modules, both of
which have somewhat helpful docstrings.

Read Configuration Options

Plugins can configure themselves using the config.yaml file. You can read
configuration values in two ways. The first is to use self.config within
your plugin class. This gives you a view onto the configuration values in a
section with the same name as your plugin’s module. For example, if your plugin
is in greatplugin.py, then self.config will refer to options under the
greatplugin: section of the config file.

For example, if you have a configuration value called “foo”, then users can put
this in their config.yaml:

greatplugin:
 foo: bar

To access this value, say self.config['foo'].get() at any point in your
plugin’s code. The self.config object is a view as defined by the Confit [http://confit.readthedocs.org/]
library.

If you want to access configuration values outside of your plugin’s section,
import the config object from the beets module. That is, just put from
beets import config at the top of your plugin and access values from there.

Add Path Format Functions and Fields

Beets supports function calls in its path format syntax (see
Path Formats). Beets includes a few built-in functions, but
plugins can add new functions using the template_func decorator. To use it,
decorate a function with MyPlugin.template_func("name") where name is
the name of the function as it should appear in template strings.

Here’s an example:

class MyPlugin(BeetsPlugin):
 pass
@MyPlugin.template_func('initial')
def _tmpl_initial(text):
 if text:
 return text[0].upper()
 else:
 return u''

This plugin provides a function %initial to path templates where
%initial{$artist} expands to the artist’s initial (its capitalized first
character).

Plugins can also add template fields, which are computed values referenced as
$name in templates. To add a new field, decorate a function taking a single
parameter, item, with MyPlugin.template_field("name"). Here’s an example
that adds a $disc_and_track field:

@MyPlugin.template_field('disc_and_track')
def _tmpl_disc_and_track(item):
 """Expand to the disc number and track number if this is a
 multi-disc release. Otherwise, just exapnds to the track
 number.
 """
 if item.disctotal > 1:
 return u'%02i.%02i' % (item.disc, item.track)
 else:
 return u'%02i' % (item.track)

With this plugin enabled, templates can reference $disc_and_track as they
can any standard metadata field.

Extend MediaFile

MediaFile [https://github.com/sampsyo/beets/wiki/MediaFile] is the file tag abstraction layer that beets uses to make
cross-format metadata manipulation simple. Plugins can add fields to MediaFile
to extend the kinds of metadata that they can easily manage.

The item_fields method on plugins should be overridden to return a
dictionary whose keys are field names and whose values are descriptor objects
that provide the field in question. The descriptors should probably be
MediaField instances (defined in beets.mediafile). Here’s an example
plugin that provides a meaningless new field “foo”:

from beets import mediafile, plugins, ui
class FooPlugin(plugins.BeetsPlugin):
 def item_fields(self):
 return {
 'foo': mediafile.MediaField(
 mp3 = mediafile.StorageStyle(
 'TXXX', id3_desc=u'Foo Field'),
 mp4 = mediafile.StorageStyle(
 '----:com.apple.iTunes:Foo Field'),
 etc = mediafile.StorageStyle('FOO FIELD')
),
 }

Later, the plugin can manipulate this new field by saying something like
mf.foo = 'bar' where mf is a MediaFile instance.

Note that, currently, these additional fields are only applied to
MediaFile itself. The beets library database schema and the Item class
are not extended, so the fields are second-class citizens. This may change
eventually.

Add Import Pipeline Stages

Many plugins need to add high-latency operations to the import workflow. For
example, a plugin that fetches lyrics from the Web would, ideally, not block the
progress of the rest of the importer. Beets allows plugins to add stages to the
parallel import pipeline.

Each stage is run in its own thread. Plugin stages run after metadata changes
have been applied to a unit of music (album or track) and before file
manipulation has occurred (copying and moving files, writing tags to disk).
Multiple stages run in parallel but each stage processes only one task at a time
and each task is processed by only one stage at a time.

Plugins provide stages as functions that take two arguments: config and
task, which are ImportConfig and ImportTask objects (both defined in
beets.importer). Add such a function to the plugin’s import_stages field
to register it:

from beets.plugins import BeetsPlugin
class ExamplePlugin(BeetsPlugin):
 def __init__(self):
 super(ExamplePlugin, self).__init__()
 self.import_stages = [self.stage]
 def stage(self, config, task):
 print('Importing something!')

Extend the Query Syntax

You can add new kinds of queries to beets’ query syntax indicated by a prefix. As an example, beets already
supports regular expression queries, which are indicated by a colon
prefix—plugins can do the same.

To do so, define a subclass of the Query type from the beets.library
module. Then, in the queries method of your plugin class, return a
dictionary mapping prefix strings to query classes.

One simple kind of query you can extend is the RegisteredFieldQuery, which
implements string comparisons. To use it, create a subclass inheriting from
that class and override the value_match class method. (Remember the
@classmethod decorator!) The following example plugin declares a query
using the @ prefix to delimit exact string matches. The plugin will be
used if we issue a command like beet ls @something or beet ls
artist:@something:

from beets.plugins import BeetsPlugin
from beets.library import PluginQuery

class ExactMatchQuery(PluginQuery):
 @classmethod
 def value_match(self, pattern, val):
 return pattern == val

class ExactMatchPlugin(BeetsPlugin):
 def queries():
 return {
 '@': ExactMatchQuery
 }

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

_static/plus.png

plugins/smartplaylist.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

Smart Playlist Plugin

smartplaylist is a plugin to generate smart playlists in m3u format based on
beets queries every time your library changes. This plugin is specifically
created to work well with MPD’s [http://mpd.wikia.com/wiki/Music_Player_Daemon_Wiki] playlist functionality.

To use it, enable the plugin by putting smartplaylist in the plugins
section in your config.yaml. Then configure your smart playlists like the
following example:

smartplaylist:
 relative_to: ~/Music
 playlist_dir: ~/.mpd/playlists
 playlists:
 - query: ''
 name: all.m3u

 - query: 'artist:Beatles'
 name: beatles.m3u

If you intend to use this plugin to generate playlists for MPD, you should set
relative_to to your MPD music directory (by default, relative_to is
None, and the absolute paths to your music files will be generated).

playlist_dir is where the generated playlist files will be put.

You can generate as many playlists as you want by adding them to the
playlists section, using beets query syntax (see
Queries) for query and the file name to be generated for
name. The query will be split using shell-like syntax, so if you need to
use spaces in the query, be sure to quote them (e.g., artist:"The Beatles").
If you have existing files with the same names, you should back them up—they
will be overwritten when the plugin runs.

For more advanced usage, you can use template syntax (see
Path Formats) in the name field. For example:

- query: 'year::201(0|1)'
 name: 'ReleasedIn$year.m3u'

This will query all the songs in 2010 and 2011 and generate the two playlist
files ReleasedIn2010.m3u and ReleasedIn2011.m3u using those songs.

By default, all playlists are regenerated after every beets command that
changes the library database. To force regeneration, you can invoke it manually
from the command line:

$ beet splupdate

which will generate your new smart playlists.

You can also use this plugin together with the MPDUpdate Plugin, in order to
automatically notify MPD of the playlist change, by adding mpdupdate to
the plugins line in your config file after the smartplaylist
plugin.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

plugins/mpdupdate.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		beets 1.1.0 documentation »

 		Plugins »

MPDUpdate Plugin

mpdupdate is a very simple plugin for beets that lets you automatically
update MPD [http://mpd.wikia.com/wiki/Music_Player_Daemon_Wiki]‘s index whenever you change your beets library.

To use it, enable it in your config.yaml by putting mpdupdate on your
plugins line. Then, you’ll probably want to configure the specifics of your
MPD server. You can do that using an mpdupdate: section in your
config.yaml, which looks like this:

mpdupdate:
 host: localhost
 port: 6600
 password: seekrit

With that all in place, you’ll see beets send the “update” command to your MPD server every time you change your beets library.

 © Copyright 2012, Adrian Sampson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

 		1.0b15

 		1.0b14

