
beets Documentation
Release 1.4.7

Adrian Sampson

May 29, 2018

Contents

1 Contents 3
1.1 Guides . 3
1.2 Reference . 13
1.3 Plugins . 42
1.4 FAQ . 103
1.5 For Developers . 108
1.6 Changelog . 123

i

ii

beets Documentation, Release 1.4.7

Welcome to the documentation for beets, the media library management system for obsessive-compulsive music geeks.

If you’re new to beets, begin with the Getting Started guide. That guide walks you through installing beets, setting it
up how you like it, and starting to build your music library.

Then you can get a more detailed look at beets’ features in the Command-Line Interface and Configuration references.
You might also be interested in exploring the plugins.

If you still need help, your can drop by the #beets IRC channel on Freenode, drop by the discussion board, send
email to the mailing list, or file a bug in the issue tracker. Please let us know where you think this documentation can
be improved.

Contents 1

http://beets.io/
http://discourse.beets.io
http://groups.google.com/group/beets-users
https://github.com/beetbox/beets/issues

beets Documentation, Release 1.4.7

2 Contents

CHAPTER 1

Contents

1.1 Guides

This section contains a couple of walkthroughs that will help you get familiar with beets. If you’re new to beets, you’ll
want to begin with the Getting Started guide.

1.1.1 Getting Started

Welcome to beets! This guide will help you begin using it to make your music collection better.

Installing

You will need Python. Beets works on Python 2.7 and Python 3.4 or later.

• macOS v10.7 (Lion) and later include Python 2.7 out of the box. You can opt for Python 3 by installing it via
Homebrew: brew install python3

• On Debian or Ubuntu, depending on the version, beets is available as an official package (Debian details,
Ubuntu details), so try typing: apt-get install beets. But the version in the repositories might lag
behind, so make sure you read the right version of these docs. If you want the latest version, you can get
everything you need to install with pip as described below by running: apt-get install python-dev
python-pip

• On Arch Linux, beets is in [community], so just run pacman -S beets. (There’s also a bleeding-edge dev
package in the AUR, which will probably set your computer on fire.)

• For Gentoo Linux, beets is in Portage as media-sound/beets. Just run emerge beets to install. There
are several USE flags available for optional plugin dependencies.

• On FreeBSD, there’s a beets port at audio/beets.

• On OpenBSD, beets can be installed with pkg_add beets.

• For Slackware, there’s a SlackBuild available.

3

http://beets.io/
http://www.python.org/download/
http://brew.sh
http://packages.qa.debian.org/b/beets.html
https://launchpad.net/ubuntu/+source/beets
https://www.archlinux.org/packages/community/any/beets/
https://aur.archlinux.org/packages/beets-git/
https://aur.archlinux.org/packages/beets-git/
http://portsmon.freebsd.org/portoverview.py?category=audio&portname=beets
http://slackbuilds.org/repository/14.1/multimedia/beets/

beets Documentation, Release 1.4.7

• On Fedora 22 or later, there is a DNF package (or three):

$ sudo dnf install beets beets-plugins beets-doc

• On Solus, run eopkg install beets.

• On NixOS, run nix-env -i beets.

If you have pip, just say pip install beets (you might need sudo in front of that).

To install without pip, download beets from its PyPI page and run python setup.py install in the directory
therein.

The best way to upgrade beets to a new version is by running pip install -U beets. You may want to follow
@b33ts on Twitter to hear about progress on new versions.

Installing on macOS 10.11 and Higher

Starting with version 10.11 (El Capitan), macOS has a new security feature called System Integrity Protection (SIP)
that prevents you from modifying some parts of the system. This means that some pip commands may fail with a
permissions error, even when you use sudo. (You probably won’t run into this if you’ve installed Python yourself
with Homebrew or otherwise.)

If this happens, you can install beets for the current user only (sans sudo) by typing pip install --user
beets. If you do that, you might want to add ~/Library/Python/3.6/bin to your $PATH.

Installing on Windows

Installing beets on Windows can be tricky. Following these steps might help you get it right:

1. If you don’t have it, install Python (you want Python 3.6). The installer should give you the option to “add
Python to PATH.” Check this box. If you do that, you can skip the next step.

2. If you haven’t done so already, set your PATH environment variable to include Python and its scripts. To do
so, you have to get the “Properties” window for “My Computer”, then choose the “Advanced” tab, then hit the
“Environment Variables” button, and then look for the PATH variable in the table. Add the following to the end
of the variable’s value: ;C:\Python36;C:\Python36\Scripts. You may need to adjust these paths to
point to your Python installation.

3. Now install beets by running: pip install beets

4. You’re all set! Type beet at the command prompt to make sure everything’s in order.

Windows users may also want to install a context menu item for importing files into beets. Download the beets.reg
file and open it in a text file to make sure the paths to Python match your system. Then double-click the file add the
necessary keys to your registry. You can then right-click a directory and choose “Import with beets”.

Because I don’t use Windows myself, I may have missed something. If you have trouble or you have more detail to
contribute here, please direct it to the mailing list.

Configuring

You’ll want to set a few basic options before you start using beets. The configuration is stored in a text file. You can
show its location by running beet config -p, though it may not exist yet. Run beet config -e to edit the
configuration in your favorite text editor. The file will start out empty, but here’s good place to start:

4 Chapter 1. Contents

https://apps.fedoraproject.org/packages/beets
http://www.pip-installer.org/
http://pypi.python.org/pypi/beets#downloads
http://twitter.com/b33ts
https://support.apple.com/en-us/HT204899
http://brew.sh
http://python.org/download/
https://github.com/beetbox/beets/blob/master/extra/beets.reg
http://groups.google.com/group/beets-users

beets Documentation, Release 1.4.7

directory: ~/music
library: ~/data/musiclibrary.db

Change that first path to a directory where you’d like to keep your music. Then, for library, choose a good place
to keep a database file that keeps an index of your music. (The config’s format is YAML. You’ll want to configure
your text editor to use spaces, not real tabs, for indentation. Also, ~ means your home directory in these paths, even
on Windows.)

The default configuration assumes you want to start a new organized music folder (that directory above) and
that you’ll copy cleaned-up music into that empty folder using beets’ import command (see below). But you can
configure beets to behave many other ways:

• Start with a new empty directory, but move new music in instead of copying it (saving disk space). Put this in
your config file:

import:
move: yes

• Keep your current directory structure; importing should never move or copy files but instead just correct the tags
on music. Put the line copy: no under the import: heading in your config file to disable any copying or
renaming. Make sure to point directory at the place where your music is currently stored.

• Keep your current directory structure and do not correct files’ tags: leave files completely unmodified on your
disk. (Corrected tags will still be stored in beets’ database, and you can use them to do renaming or tag changes
later.) Put this in your config file:

import:
copy: no
write: no

to disable renaming and tag-writing.

There are approximately six million other configuration options you can set here, including the directory and file
naming scheme. See Configuration for a full reference.

Importing Your Library

The next step is to import your music files into the beets library database. Because this can involve modifying files and
moving them around, data loss is always a possibility, so now would be a good time to make sure you have a recent
backup of all your music. We’ll wait.

There are two good ways to bring your existing library into beets. You can either: (a) quickly bring all your files with
all their current metadata into beets’ database, or (b) use beets’ highly-refined autotagger to find canonical metadata
for every album you import. Option (a) is really fast, but option (b) makes sure all your songs’ tags are exactly right
from the get-go. The point about speed bears repeating: using the autotagger on a large library can take a very long
time, and it’s an interactive process. So set aside a good chunk of time if you’re going to go that route. For more on
the interactive tagging process, see Using the Auto-Tagger.

If you’ve got time and want to tag all your music right once and for all, do this:

$ beet import /path/to/my/music

(Note that by default, this command will copy music into the directory you specified above. If you want to use your
current directory structure, set the import.copy config option.) To take the fast, un-autotagged path, just say:

$ beet import -A /my/huge/mp3/library

1.1. Guides 5

http://yaml.org/

beets Documentation, Release 1.4.7

Note that you just need to add -A for “don’t autotag”.

Adding More Music

If you’ve ripped or. . . otherwise obtained some new music, you can add it with the beet import command, the
same way you imported your library. Like so:

$ beet import ~/some_great_album

This will attempt to autotag the new album (interactively) and add it to your library. There are, of course, more options
for this command—just type beet help import to see what’s available.

Seeing Your Music

If you want to query your music library, the beet list (shortened to beet ls) command is for you. You give it
a query string, which is formatted something like a Google search, and it gives you a list of songs. Thus:

$ beet ls the magnetic fields
The Magnetic Fields - Distortion - Three-Way
The Magnetic Fields - Distortion - California Girls
The Magnetic Fields - Distortion - Old Fools
$ beet ls hissing gronlandic
of Montreal - Hissing Fauna, Are You the Destroyer? - Gronlandic Edit
$ beet ls bird
The Knife - The Knife - Bird
The Mae Shi - Terrorbird - Revelation Six
$ beet ls album:bird
The Mae Shi - Terrorbird - Revelation Six

By default, a search term will match any of a handful of common attributes of songs. (They’re also implicitly joined by
ANDs: a track must match all criteria in order to match the query.) To narrow a search term to a particular metadata
field, just put the field before the term, separated by a : character. So album:bird only looks for bird in the
“album” field of your songs. (Need to know more? Queries will answer all your questions.)

The beet list command also has an -a option, which searches for albums instead of songs:

$ beet ls -a forever
Bon Iver - For Emma, Forever Ago
Freezepop - Freezepop Forever

There’s also an -f option (for format) that lets you specify what gets displayed in the results of a search:

$ beet ls -a forever -f "[$format] $album ($year) - $artist - $title"
[MP3] For Emma, Forever Ago (2009) - Bon Iver - Flume
[AAC] Freezepop Forever (2011) - Freezepop - Harebrained Scheme

In the format option, field references like $format and $year are filled in with data from each result. You can see a full
list of available fields by running beet fields.

Beets also has a stats command, just in case you want to see how much music you have:

$ beet stats
Tracks: 13019
Total time: 4.9 weeks
Total size: 71.1 GB

(continues on next page)

6 Chapter 1. Contents

beets Documentation, Release 1.4.7

(continued from previous page)

Artists: 548
Albums: 1094

Keep Playing

This is only the beginning of your long and prosperous journey with beets. To keep learning, take a look at Advanced
Awesomeness for a sampling of what else is possible. You’ll also want to glance over the Command-Line Interface
page for a more detailed description of all of beets’ functionality. (Like deleting music! That’s important.)

Also, check out beets’ plugins. The real power of beets is in its extensibility—with plugins, beets can do almost
anything for your music collection.

You can always get help using the beet help command. The plain beet help command lists all the available
commands; then, for example, beet help import gives more specific help about the import command.

Please let me know what you think of beets via the discussion board or Twitter.

1.1.2 Using the Auto-Tagger

Beets’ automatic metadata correcter is sophisticated but complicated and cryptic. This is a guide to help you through
its myriad inputs and options.

An Apology and a Brief Interlude

I would like to sincerely apologize that the autotagger in beets is so fussy. It asks you a lot of complicated questions,
insecurely asking that you verify nearly every assumption it makes. This means importing and correcting the tags for
a large library can be an endless, tedious process. I’m sorry for this.

Maybe it will help to think of it as a tradeoff. By carefully examining every album you own, you get to become more
familiar with your library, its extent, its variation, and its quirks. People used to spend hours lovingly sorting and
resorting their shelves of LPs. In the iTunes age, many of us toss our music into a heap and forget about it. This is
great for some people. But there’s value in intimate, complete familiarity with your collection. So instead of a chore,
try thinking of correcting tags as quality time with your music collection. That’s what I do.

One practical piece of advice: because beets’ importer runs in multiple threads, it queues up work in the background
while it’s waiting for you to respond. So if you find yourself waiting for beets for a few seconds between every
question it asks you, try walking away from the computer for a while, making some tea, and coming back. Beets will
have a chance to catch up with you and will ask you questions much more quickly.

Back to the guide.

Overview

Beets’ tagger is invoked using the beet import command. Point it at a directory and it imports the files into your
library, tagging them as it goes (unless you pass --noautotag, of course). There are several assumptions beets
currently makes about the music you import. In time, we’d like to remove all of these limitations.

• Your music should be organized by album into directories. That is, the tagger assumes that each album is
in a single directory. These directories can be arbitrarily deep (like music/2010/hiphop/seattle/
freshespresso/glamour), but any directory with music files in it is interpreted as a separate album.

There are, however, a couple of exceptions to this rule:

1.1. Guides 7

http://discourse.beets.io
http://twitter.com/b33ts

beets Documentation, Release 1.4.7

First, directories that look like separate parts of a multi-disc album are tagged together as a single release. If two
adjacent albums have a common prefix, followed by “disc,” “disk,” or “CD” and then a number, they are tagged
together.

Second, if you have jumbled directories containing more than one album, you can ask beets to split them apart
for you based on their metadata. Use either the --group-albums command-line flag or the G interactive
option described below.

• The music may have bad tags, but it’s not completely untagged. This is because beets by default infers tags
based on existing metadata. But this is not a hard and fast rule—there are a few ways to tag metadata-poor
music:

– You can use the E or I options described below to search in MusicBrainz for a specific album or song.

– The Acoustid plugin extends the autotagger to use acoustic fingerprinting to find information for arbitrary
audio. Install that plugin if you’re willing to spend a little more CPU power to get tags for unidentified
albums. (But be aware that it does slow down the process.)

– The FromFilename plugin adds the ability to guess tags from the filenames. Use this plugin if your tracks
have useful names (like “03 Call Me Maybe.mp3”) but their tags don’t reflect that.

• Currently, MP3, AAC, FLAC, ALAC, Ogg Vorbis, Monkey’s Audio, WavPack, Musepack, Windows Media,
Opus, and AIFF files are supported. (Do you use some other format? Please file a feature request!)

Now that that’s out of the way, let’s tag some music.

Options

To import music, just say beet import MUSICDIR. There are, of course, a few command-line options you should
know:

• beet import -A: don’t try to autotag anything; just import files (this goes much faster than with autotagging
enabled)

• beet import -W: when autotagging, don’t write new tags to the files themselves (just keep the new metadata
in beets’ database)

• beet import -C: don’t copy imported files to your music directory; leave them where they are

• beet import -m: move imported files to your music directory (overrides the -c option)

• beet import -l LOGFILE: write a message to LOGFILE every time you skip an album or choose to take
its tags “as-is” (see below) or the album is skipped as a duplicate; this lets you come back later and reexamine
albums that weren’t tagged successfully

• beet import -q: quiet mode. Never prompt for input and, instead, conservatively skip any albums that
need your opinion. The -ql combination is recommended.

• beet import -t: timid mode, which is sort of the opposite of “quiet.” The importer will ask your permission
for everything it does, confirming even very good matches with a prompt.

• beet import -p: automatically resume an interrupted import. The importer keeps track of imports that
don’t finish completely (either due to a crash or because you stop them halfway through) and, by default, prompts
you to decide whether to resume them. The -p flag automatically says “yes” to this question. Relatedly, -P flag
automatically says “no.”

• beet import -s: run in singleton mode, tagging individual tracks instead of whole albums at a time. See
the “as Tracks” choice below. This means you can use beet import -AC to quickly add a bunch of files to
your library without doing anything to them.

8 Chapter 1. Contents

https://github.com/beetbox/beets/issues/new

beets Documentation, Release 1.4.7

• beet import -g: assume there are multiple albums contained in each directory. The tracks contained a
directory are grouped by album artist and album name and you will be asked to import each of these groups
separately. See the “Group albums” choice below.

Similarity

So you import an album into your beets library. It goes like this:

$ beet imp witchinghour
Tagging:

Ladytron - Witching Hour
(Similarity: 98.4%)

* Last One Standing -> The Last One Standing

* Beauty -> Beauty*2

* White Light Generation -> Whitelightgenerator

* All the Way -> All the Way...

Here, beets gives you a preview of the album match it has found. It shows you which track titles will be changed if the
match is applied. In this case, beets has found a match and thinks it’s a good enough match to proceed without asking
your permission. It has reported the similarity for the match it’s found. Similarity is a measure of how well-matched
beets thinks a tagging option is. 100% similarity means a perfect match 0% indicates a truly horrible match.

In this case, beets has proceeded automatically because it found an option with very high similarity (98.4%). But, as
you’ll notice, if the similarity isn’t quite so high, beets will ask you to confirm changes. This is because beets can’t be
very confident about more dissimilar matches, and you (as a human) are better at making the call than a computer. So
it occasionally asks for help.

Choices

When beets needs your input about a match, it says something like this:

Tagging:
Beirut - Lon Gisland

(Similarity: 94.4%)

* Scenic World (Second Version) -> Scenic World
[A]pply, More candidates, Skip, Use as-is, as Tracks, Enter search, enter Id, or
→˓aBort?

When beets asks you this question, it wants you to enter one of the capital letters: A, M, S, U, T, G, E, I or B. That is,
you can choose one of the following:

• A: Apply the suggested changes shown and move on.

• M: Show more options. (See the Candidates section, below.)

• S: Skip this album entirely and move on to the next one.

• U: Import the album without changing any tags. This is a good option for albums that aren’t in the MusicBrainz
database, like your friend’s operatic faux-goth solo record that’s only on two CD-Rs in the universe.

• T: Import the directory as singleton tracks, not as an album. Choose this if the tracks don’t form a real re-
lease—you just have one or more loner tracks that aren’t a full album. This will temporarily flip the tagger into
singleton mode, which attempts to match each track individually.

• G: Group tracks in this directory by album artist and album and import groups as albums. If the album artist for
a track is not set then the artist is used to group that track. For each group importing proceeds as for directories.
This is helpful if a directory contains multiple albums.

1.1. Guides 9

beets Documentation, Release 1.4.7

• E: Enter an artist and album to use as a search in the database. Use this option if beets hasn’t found any good
options because the album is mistagged or untagged.

• I: Enter a metadata backend ID to use as search in the database. Use this option to specify a backend entity (for
example, a MusicBrainz release or recording) directly, by pasting its ID or the full URL. You can also specify
several IDs by separating them by a space.

• B: Cancel this import task altogether. No further albums will be tagged; beets shuts down immediately. The
next time you attempt to import the same directory, though, beets will ask you if you want to resume tagging
where you left off.

Note that the option with [B]rackets is the default—so if you want to apply the changes, you can just hit return
without entering anything.

Candidates

If you choose the M option, or if beets isn’t very confident about any of the choices it found, it will present you with a
list of choices (called candidates), like so:

Finding tags for "Panther - Panther".
Candidates:
1. Panther - Yourself (66.8%)
2. Tav Falco's Panther Burns - Return of the Blue Panther (30.4%)
selection (default 1), Skip, Use as-is, or Enter search, or aBort?

Here, you have many of the same options as before, but you can also enter a number to choose one of the options
that beets has found. Don’t worry about guessing—beets will show you the proposed changes and ask you to confirm
them, just like the earlier example. As the prompt suggests, you can just hit return to select the first candidate.

Duplicates

If beets finds an album or item in your library that seems to be the same as the one you’re importing, you may see a
prompt like this:

This album is already in the library!
[S]kip new, Keep both, Remove old, Merge all?

Beets wants to keep you safe from duplicates, which can be a real pain, so you have four choices in this situation. You
can skip importing the new music, choosing to keep the stuff you already have in your library; you can keep both the
old and the new music; you can remove the existing music and choose the new stuff; or you can merge all the new and
old tracks into a single album. If you choose that “remove” option, any duplicates will be removed from your library
database—and, if the corresponding files are located inside of your beets library directory, the files themselves will be
deleted as well.

If you choose “merge”, beets will try re-importing the existing and new tracks as one bundle together. This is partic-
ularly helpful when you have an album that’s missing some tracks and then want to import the remaining songs. The
importer will ask you the same questions as it would if you were importing all tracks at once.

If you choose to keep two identically-named albums, beets can avoid storing both in the same directory. See Album
Disambiguation for details.

Fingerprinting

You may have noticed by now that beets’ autotagger works pretty well for most files, but can get confused when
files don’t have any metadata (or have wildly incorrect metadata). In this case, you need acoustic fingerprinting,

10 Chapter 1. Contents

beets Documentation, Release 1.4.7

a technology that identifies songs from the audio itself. With fingerprinting, beets can autotag files that have very
bad or missing tags. The “chroma” plugin, distributed with beets, uses the Chromaprint open-source fingerprinting
technology, but it’s disabled by default. That’s because it’s sort of tricky to install. See the Chromaprint/Acoustid
Plugin page for a guide to getting it set up.

Before you jump into acoustic fingerprinting with both feet, though, give beets a try without it. You may be surprised
at how well metadata-based matching works.

Album Art, Lyrics, Genres and Such

Aside from the basic stuff, beets can optionally fetch more specialized metadata. As a rule, plugins are responsible for
getting information that doesn’t come directly from the MusicBrainz database. This includes album cover art, song
lyrics, and musical genres. Check out the list of plugins to pick and choose the data you want.

Missing Albums?

If you’re having trouble tagging a particular album with beets, check to make sure the album is present in the Mu-
sicBrainz database. You can search on their site to make sure it’s cataloged there. If not, anyone can edit Mu-
sicBrainz—so consider adding the data yourself.

If you think beets is ignoring an album that’s listed in MusicBrainz, please file a bug report.

I Hope That Makes Sense

If we haven’t made the process clear, please post on the discussion board and we’ll try to improve this guide.

1.1.3 Advanced Awesomeness

So you have beets up and running and you’ve started importing your music. There’s a lot more that beets can do now
that it has cataloged your collection. Here’s a few features to get you started.

Most of these tips involve plugins and fiddling with beets’ configuration. So use your favorite text editor create a
config file before you continue.

Fetch album art, genres, and lyrics

Beets can help you fill in more than just the basic taxonomy metadata that comes from MusicBrainz. Plugins can
provide album art, lyrics, and genres from databases around the Web.

If you want beets to get any of this data automatically during the import process, just enable any of the three relevant
plugins (see Plugins). For example, put this line in your config file to enable all three:

plugins: fetchart lyrics lastgenre

Each plugin also has a command you can run to fetch data manually. For example, if you want to get lyrics for all the
Beatles tracks in your collection, just type beet lyrics beatles after enabling the plugin.

Read more about using each of these plugins:

• FetchArt Plugin (and its accompanying EmbedArt Plugin)

• Lyrics Plugin

• LastGenre Plugin

1.1. Guides 11

http://acoustid.org/chromaprint
http://musicbrainz.org/
http://musicbrainz.org/
https://github.com/beetbox/beets/issues
http://discourse.beets.io

beets Documentation, Release 1.4.7

Customize your file and folder names

Beets uses an extremely flexible template system to name the folders and files that organize your music in your
filesystem. Take a look at Path Format Configuration for the basics: use fields like $year and $title to build up a
naming scheme. But if you need more flexibility, there are two features you need to know about:

• Template functions are simple expressions you can use in your path formats to add logic to your names. For
example, you can get an artist’s first initial using %upper{%left{$albumartist,1}}.

• If you need more flexibility, the Inline Plugin lets you write snippets of Python code that generate parts of
your filenames. The equivalent code for getting an artist initial with the inline plugin looks like initial:
albumartist[0].upper().

If you already have music in your library and want to update their names according to a new scheme, just run the move
command to rename everything.

Stream your music to another computer

Sometimes it can be really convenient to store your music on one machine and play it on another. For example, I like
to keep my music on a server at home but play it at work (without copying my whole library locally). The Web Plugin
makes streaming your music easy—it’s sort of like having your own personal Spotify.

First, enable the web plugin (see Plugins). Run the server by typing beet web and head to http://localhost:8337 in
a browser. You can browse your collection with queries and, if your browser supports it, play music using HTML5
audio.

Transcode music files for media players

Do you ever find yourself transcoding high-quality rips to a lower-bitrate, lossy format for your phone or music player?
Beets can help with that.

You’ll first need to install ffmpeg. Then, enable beets’ Convert Plugin. Set a destination directory in your config file
like so:

convert:
dest: ~/converted_music

Then, use the command beet convert QUERY to transcode everything matching the query and drop the resulting
files in that directory, named according to your path formats. For example, beet convert long winters will
move over everything by the Long Winters for listening on the go.

The plugin has many more dials you can fiddle with to get your conversions how you like them. Check out its
documentation.

Store any data you like

The beets database keeps track of a long list of built-in fields, but you’re not limited to just that list. Say, for example,
that you like to categorize your music by the setting where it should be played. You can invent a new context
attribute to store this. Set the field using the modify command:

beet modify context=party artist:'beastie boys'

By default beets will show you the changes that are about to be applied and ask if you really want to apply them to all,
some or none of the items or albums. You can type y for “yes”, n for “no”, or s for “select”. If you choose the latter,
the command will prompt you for each individual matching item or album.

12 Chapter 1. Contents

http://localhost:8337
http://www.ffmpeg.org

beets Documentation, Release 1.4.7

Then query your music just as you would with any other field:

beet ls context:mope

You can even use these fields in your filenames (see Path Format Configuration).

And, unlike built-in fields, such fields can be removed:

beet modify context! artist:'beastie boys'

Read more than you ever wanted to know about the flexible attributes feature on the beets blog.

Choose a path style manually for some music

Sometimes, you need to categorize some songs differently in your file system. For example, you might want to group
together all the music you don’t really like but keep around to play for friends and family. This is, of course, impossible
to determine automatically using metadata from MusicBrainz.

Instead, use a flexible attribute (see above) to store a flag on the music you want to categorize, like so:

beet modify bad=1 christmas

Then, you can query on this field in your path formats to sort this music differently. Put something like this in your
configuration file:

paths:
bad:1: Bad/$artist/$title

Used together, flexible attributes and path format conditions let you sort your music by any criteria you can imagine.

1.2 Reference

This section contains reference materials for various parts of beets. To get started with beets as a new user, though,
you may want to read the Getting Started guide first.

1.2.1 Command-Line Interface

Commands

import

beet import [-CWAPRqst] [-l LOGPATH] PATH...
beet import [options] -L QUERY

Add music to your library, attempting to get correct tags for it from MusicBrainz.

Point the command at some music: directories, single files, or compressed archives. The music will be copied to a
configurable directory structure and added to a library database. The command is interactive and will try to get you to
verify MusicBrainz tags that it thinks are suspect. See the autotagging guide for detail on how to use the interactive
tag-correction flow.

Directories passed to the import command can contain either a single album or many, in which case the leaf directories
will be considered albums (the latter case is true of typical Artist/Album organizations and many people’s “downloads”

1.2. Reference 13

http://beets.io/blog/flexattr.html

beets Documentation, Release 1.4.7

folders). The path can also be a single song or an archive. Beets supports zip and tar archives out of the box. To extract
rar files, install the rarfile package and the unrar command.

Optional command flags:

• By default, the command copies files your the library directory and updates the ID3 tags on your music. In
order to move the files, instead of copying, use the -m (move) option. If you’d like to leave your music files
untouched, try the -C (don’t copy) and -W (don’t write tags) options. You can also disable this behavior by
default in the configuration file (below).

• Also, you can disable the autotagging behavior entirely using -A (don’t autotag)—then your music will be
imported with its existing metadata.

• During a long tagging import, it can be useful to keep track of albums that weren’t tagged successfully—either
because they’re not in the MusicBrainz database or because something’s wrong with the files. Use the -l option
to specify a filename to log every time you skip an album or import it “as-is” or an album gets skipped as a
duplicate.

• Relatedly, the -q (quiet) option can help with large imports by autotagging without ever bothering to ask for
user input. Whenever the normal autotagger mode would ask for confirmation, the quiet mode pessimistically
skips the album. The quiet mode also disables the tagger’s ability to resume interrupted imports.

• Speaking of resuming interrupted imports, the tagger will prompt you if it seems like the last import of the
directory was interrupted (by you or by a crash). If you want to skip this prompt, you can say “yes” automatically
by providing -p or “no” using -P. The resuming feature can be disabled by default using a configuration option
(see below).

• If you want to import only the new stuff from a directory, use the -i option to run an incremental import. With
this flag, beets will keep track of every directory it ever imports and avoid importing them again. This is useful
if you have an “incoming” directory that you periodically add things to. To get this to work correctly, you’ll
need to use an incremental import every time you run an import on the directory in question—including the first
time, when no subdirectories will be skipped. So consider enabling the incremental configuration option.

• When beets applies metadata to your music, it will retain the value of any existing tags that weren’t overwritten,
and import them into the database. You may prefer to only use existing metadata for finding matches, and to
erase it completely when new metadata is applied. You can enforce this behavior with the --from-scratch
option, or the from_scratch configuration option.

• By default, beets will proceed without asking if it finds a very close metadata match. To disable this and have
the importer ask you every time, use the -t (for timid) option.

• The importer typically works in a whole-album-at-a-time mode. If you instead want to import individual, non-
album tracks, use the singleton mode by supplying the -s option.

• If you have an album that’s split across several directories under a common top directory, use the --flat
option. This takes all the music files under the directory (recursively) and treats them as a single large album
instead of as one album per directory. This can help with your more stubborn multi-disc albums.

• Similarly, if you have one directory that contains multiple albums, use the --group-albums option to split
the files based on their metadata before matching them as separate albums.

• If you want to preview which files would be imported, use the --pretend option. If set, beets will just print
a list of files that it would otherwise import.

• If you already have a metadata backend ID that matches the items to be imported, you can instruct beets to restrict
the search to that ID instead of searching for other candidates by using the --search-id SEARCH_ID
option. Multiple IDs can be specified by simply repeating the option several times.

• You can supply --set field=value to assign field to value on import. These assignments will merge with
(and possibly override) the set_fields configuration dictionary. You can use the option multiple times on the
command line, like so:

14 Chapter 1. Contents

https://pypi.python.org/pypi/rarfile/2.2

beets Documentation, Release 1.4.7

beet import --set genre="Alternative Rock" --set mood="emotional"

list

beet list [-apf] QUERY

Queries the database for music.

Want to search for “Gronlandic Edit” by of Montreal? Try beet list gronlandic. Maybe you want to see
everything released in 2009 with “vegetables” in the title? Try beet list year:2009 title:vegetables.
You can also specify the sort order. (Read more in Queries.)

You can use the -a switch to search for albums instead of individual items. In this case, the queries you use are
restricted to album-level fields: for example, you can search for year:1969 but query parts for item-level fields like
title:foo will be ignored. Remember that artist is an item-level field; albumartist is the corresponding
album field.

The -p option makes beets print out filenames of matched items, which might be useful for piping into other Unix
commands (such as xargs). Similarly, the -f option lets you specify a specific format with which to print every album
or track. This uses the same template syntax as beets’ path formats. For example, the command beet ls -af
'$album: $tracktotal' beatles prints out the number of tracks on each Beatles album. In Unix shells,
remember to enclose the template argument in single quotes to avoid environment variable expansion.

remove

beet remove [-adf] QUERY

Remove music from your library.

This command uses the same query syntax as the list command. You’ll be shown a list of the files that will be
removed and asked to confirm. By default, this just removes entries from the library database; it doesn’t touch the files
on disk. To actually delete the files, use beet remove -d. If you do not want to be prompted to remove the files,
use beet remove -f.

modify

beet modify [-MWay] [-f FORMAT] QUERY [FIELD=VALUE...] [FIELD!...]

Change the metadata for items or albums in the database.

Supply a query matching the things you want to change and a series of field=value pairs. For example, beet
modify genius of love artist="Tom Tom Club" will change the artist for the track “Genius of Love.”
To remove fields (which is only possible for flexible attributes), follow a field name with an exclamation point:
field!.

The -a switch operates on albums instead of individual tracks. Without this flag, the command will only change
track-level data, even if all the tracks belong to the same album. If you want to change an album-level field, such as
year or albumartist, you’ll want to use the -a flag to avoid a confusing situation where the data for individual
tracks conflicts with the data for the whole album.

Items will automatically be moved around when necessary if they’re in your library directory, but you can disable that
with -M. Tags will be written to the files according to the settings you have for imports, but these can be overridden
with -w (write tags, the default) and -W (don’t write tags).

1.2. Reference 15

http://en.wikipedia.org/wiki/Xargs

beets Documentation, Release 1.4.7

When you run the modify command, it prints a list of all affected items in the library and asks for your permission
before making any changes. You can then choose to abort the change (type n), confirm (y), or interactively choose
some of the items (s). In the latter case, the command will prompt you for every matching item or album and invite
you to type y or n. This option lets you choose precisely which data to change without spending too much time to
carefully craft a query. To skip the prompts entirely, use the -y option.

move

beet move [-capt] [-d DIR] QUERY

Move or copy items in your library.

This command, by default, acts as a library consolidator: items matching the query are renamed into your library
directory structure. By specifying a destination directory with -d manually, you can move items matching a query
anywhere in your filesystem. The -c option copies files instead of moving them. As with other commands, the -a
option matches albums instead of items. The -e flag (for “export”) copies files without changing the database.

To perform a “dry run”, just use the -p (for “pretend”) flag. This will show you a list of files that would be moved but
won’t actually change anything on disk. The -t option sets the timid mode which will ask again before really moving
or copying the files.

update

beet update [-F] FIELD [-aM] QUERY

Update the library (and, optionally, move files) to reflect out-of-band metadata changes and file deletions.

This will scan all the matched files and read their tags, populating the database with the new values. By default, files
will be renamed according to their new metadata; disable this with -M. Beets will skip files if their modification times
have not changed, so any out-of-band metadata changes must also update these for beet update to recognise that
the files have been edited.

To perform a “dry run” of an update, just use the -p (for “pretend”) flag. This will show you all the proposed changes
but won’t actually change anything on disk.

By default, all the changed metadata will be populated back to the database. If you only want certain fields to be
written, specify them with the `-F` flags (which can be used multiple times). For the list of supported fields, please
see `beet fields`.

When an updated track is part of an album, the album-level fields of all tracks from the album are also updated.
(Specifically, the command copies album-level data from the first track on the album and applies it to the rest of the
tracks.) This means that, if album-level fields aren’t identical within an album, some changes shown by the update
command may be overridden by data from other tracks on the same album. This means that running the update
command multiple times may show the same changes being applied.

write

beet write [-pf] [QUERY]

Write metadata from the database into files’ tags.

When you make changes to the metadata stored in beets’ library database (during import or with the modify command,
for example), you often have the option of storing changes only in the database, leaving your files untouched. The

16 Chapter 1. Contents

beets Documentation, Release 1.4.7

write command lets you later change your mind and write the contents of the database into the files. By default, this
writes the changes only if there is a difference between the database and the tags in the file.

You can think of this command as the opposite of update.

The -p option previews metadata changes without actually applying them.

The -f option forces a write to the file, even if the file tags match the database. This is useful for making sure that
enabled plugins that run on write (e.g., the Scrub and Zero plugins) are run on the file.

stats

beet stats [-e] [QUERY]

Show some statistics on your entire library (if you don’t provide a query) or the matched items (if you do).

By default, the command calculates file sizes using their bitrate and duration. The -e (--exact) option reads the
exact sizes of each file (but is slower). The exact mode also outputs the exact duration in seconds.

fields

beet fields

Show the item and album metadata fields available for use in Queries and Path Formats. The listing includes any
template fields provided by plugins and any flexible attributes you’ve manually assigned to your items and albums.

config

beet config [-pdc]
beet config -e

Show or edit the user configuration. This command does one of three things:

• With no options, print a YAML representation of the current user configuration. With the --default option,
beets’ default options are also included in the dump.

• The --path option instead shows the path to your configuration file. This can be combined with the
--default flag to show where beets keeps its internal defaults.

• By default, sensitive information like passwords is removed when dumping the configuration. The --clear
option includes this sensitive data.

• With the --edit option, beets attempts to open your config file for editing. It first tries the $EDITOR envi-
ronment variable and then a fallback option depending on your platform: open on OS X, xdg-open on Unix,
and direct invocation on Windows.

Global Flags

Beets has a few “global” flags that affect all commands. These must appear between the executable name (beet) and
the command—for example, beet -v import

• -l LIBPATH: specify the library database file to use.

• -d DIRECTORY: specify the library root directory.

1.2. Reference 17

beets Documentation, Release 1.4.7

• -v: verbose mode; prints out a deluge of debugging information. Please use this flag when reporting bugs. You
can use it twice, as in -vv, to make beets even more verbose.

• -c FILE: read a specified YAML configuration file. This configuration works as an overlay: rather than
replacing your normal configuration options entirely, the two are merged. Any individual options set in this
config file will override the corresponding settings in your base configuration.

Beets also uses the BEETSDIR environment variable to look for configuration and data.

Shell Completion

Beets includes support for shell command completion. The command beet completion prints out a bash 3.2
script; to enable completion put a line like this into your .bashrc or similar file:

eval "$(beet completion)"

Or, to avoid slowing down your shell startup time, you can pipe the beet completion output to a file and source
that instead.

You will also need to source the bash-completion script, which is probably available via your package manager. On
OS X, you can install it via Homebrew with brew install bash-completion; Homebrew will give you
instructions for sourcing the script.

The completion script suggests names of subcommands and (after typing -) options of the given command. If you are
using a command that accepts a query, the script will also complete field names.

beet list ar[TAB]
artist: artist_credit: artist_sort: artpath:
beet list artp[TAB]
beet list artpath\:

(Don’t worry about the slash in front of the colon: this is a escape sequence for the shell and won’t be seen by beets.)

Completion of plugin commands only works for those plugins that were enabled when running beet completion.
If you add a plugin later on you will want to re-generate the script.

zsh

If you use zsh, take a look at the included completion script. The script should be placed in a directory that is part of
your fpath, and not sourced in your .zshrc. Running echo $fpath will give you a list of valid directories.

Another approach is to use zsh’s bash completion compatibility. This snippet defines some bash-specific functions to
make this work without errors:

autoload bashcompinit
bashcompinit
_get_comp_words_by_ref() { :; }
compopt() { :; }
_filedir() { :; }
eval "$(beet completion)"

1.2.2 Configuration

Beets has an extensive configuration system that lets you customize nearly every aspect of its operation. To configure
beets, you create a file called config.yaml. The location of the file depend on your platform (type beet config
-p to see the path on your system):

18 Chapter 1. Contents

https://www.gnu.org/software/bash/
http://bash-completion.alioth.debian.org/
https://github.com/beetbox/beets/blob/master/extra/_beet

beets Documentation, Release 1.4.7

• On Unix-like OSes, write ~/.config/beets/config.yaml.

• On Windows, use %APPDATA%\beets\config.yaml. This is usually in a directory like
C:\Users\You\AppData\Roaming.

• On OS X, you can use either the Unix location or ~/Library/Application Support/beets/
config.yaml.

You can launch your text editor to create or update your configuration by typing beet config -e. (See the config
command for details.) It is also possible to customize the location of the configuration file and even use multiple layers
of configuration. See Configuration Location, below.

The config file uses YAML syntax. You can use the full power of YAML, but most configuration options are simple
key/value pairs. This means your config file will look like this:

option: value
another_option: foo
bigger_option:

key: value
foo: bar

In YAML, you will need to use spaces (not tabs!) to indent some lines. If you have questions about more sophisticated
syntax, take a look at the YAML documentation.

The rest of this page enumerates the dizzying litany of configuration options available in beets. You might also want
to see an example.

• Global Options

– library

– directory

– plugins

– include

– pluginpath

– ignore

– ignore_hidden

– replace

– asciify_paths

– art_filename

– threaded

– format_item

– format_album

– sort_item

– sort_album

– sort_case_insensitive

– original_date

– artist_credit

1.2. Reference 19

http://yaml.org/
http://yaml.org/

beets Documentation, Release 1.4.7

– per_disc_numbering

– terminal_encoding

– clutter

– max_filename_length

– id3v23

– va_name

• UI Options

– color

– colors

• Importer Options

– write

– copy

– move

– link

– hardlink

– resume

– incremental

– incremental_skip_later

– from_scratch

– quiet_fallback

– none_rec_action

– timid

– log

– default_action

– languages

– detail

– group_albums

– autotag

– duplicate_action

– bell

– set_fields

• MusicBrainz Options

– searchlimit

• Autotagger Matching Options

– max_rec

20 Chapter 1. Contents

beets Documentation, Release 1.4.7

– preferred

– ignored

– required

– ignored_media

– ignore_video_tracks

• Path Format Configuration

• Configuration Location

– Environment Variable

– Command-Line Option

– Default Location

• Example

Global Options

These options control beets’ global operation.

library

Path to the beets library file. By default, beets will use a file called library.db alongside your configuration file.

directory

The directory to which files will be copied/moved when adding them to the library. Defaults to a folder called Music
in your home directory.

plugins

A space-separated list of plugin module names to load. See Using Plugins.

include

A space-separated list of extra configuration files to include. Filenames are relative to the directory containing
config.yaml.

pluginpath

Directories to search for plugins. Each Python file or directory in a plugin path represents a plugin and should define
a subclass of BeetsPlugin. A plugin can then be loaded by adding the filename to the plugins configuration. The
plugin path can either be a single string or a list of strings—so, if you have multiple paths, format them as a YAML
list like so:

1.2. Reference 21

beets Documentation, Release 1.4.7

pluginpath:
- /path/one
- /path/two

ignore

A list of glob patterns specifying file and directory names to be ignored when importing. By default, this consists
of .*, *~, System Volume Information, lost+found (i.e., beets ignores Unix-style hidden files, backup
files, and directories that appears at the root of some Linux and Windows filesystems).

ignore_hidden

Either yes or no; whether to ignore hidden files when importing. On Windows, the “Hidden” property of files is
used to detect whether or not a file is hidden. On OS X, the file’s “IsHidden” flag is used to detect whether or not a
file is hidden. On both OS X and other platforms (excluding Windows), files (and directories) starting with a dot are
detected as hidden files.

replace

A set of regular expression/replacement pairs to be applied to all filenames created by beets. Typically, these replace-
ments are used to avoid confusing problems or errors with the filesystem (for example, leading dots, which hide files
on Unix, and trailing whitespace, which is illegal on Windows). To override these substitutions, specify a mapping
from regular expression to replacement strings. For example, [xy]: z will make beets replace all instances of the
characters x or y with the character z.

If you do change this value, be certain that you include at least enough substitutions to avoid causing errors on your
operating system. Here are the default substitutions used by beets, which are sufficient to avoid unexpected behavior
on all popular platforms:

replace:
'[\\/]': _
'^\.': _
'[\x00-\x1f]': _
'[<>:"\?*\|]': _
'\.$': _
'\s+$': ''
'^\s+': ''
'^-': _

These substitutions remove forward and back slashes, leading dots, and control characters—all of which is a good idea
on any OS. The fourth line removes the Windows “reserved characters” (useful even on Unix for for compatibility
with Windows-influenced network filesystems like Samba). Trailing dots and trailing whitespace, which can cause
problems on Windows clients, are also removed.

When replacements other than the defaults are used, it is possible that they will increase the length of the path. In the
scenario where this leads to a conflict with the maximum filename length, the default replacements will be used to
resolve the conflict and beets will display a warning.

Note that paths might contain special characters such as typographical quotes (“”). With the configuration above,
those will not be replaced as they don’t match the typewriter quote ("). To also strip these special characters, you can
either add them to the replacement list or use the asciify_paths configuration option below.

22 Chapter 1. Contents

beets Documentation, Release 1.4.7

asciify_paths

Convert all non-ASCII characters in paths to ASCII equivalents.

For example, if your path template for singletons is singletons/$title and the title of a track is “Café”, then the
track will be saved as singletons/Cafe.mp3. The changes take place before applying the replace configuration
and are roughly equivalent to wrapping all your path templates in the %asciify{} template function.

Default: no.

art_filename

When importing album art, the name of the file (without extension) where the cover art image should be placed. This
is a template string, so you can use any of the syntax available to Path Formats. Defaults to cover (i.e., images will
be named cover.jpg or cover.png and placed in the album’s directory).

threaded

Either yes or no, indicating whether the autotagger should use multiple threads. This makes things substantially faster
by overlapping work: for example, it can copy files for one album in parallel with looking up data in MusicBrainz for
a different album. You may want to disable this when debugging problems with the autotagger. Defaults to yes.

format_item

Format to use when listing individual items with the list command and other commands that need to print out items.
Defaults to $artist - $album - $title. The -f command-line option overrides this setting.

It used to be named list_format_item.

format_album

Format to use when listing albums with list and other commands. Defaults to $albumartist - $album. The -f
command-line option overrides this setting.

It used to be named list_format_album.

sort_item

Default sort order to use when fetching items from the database. Defaults to artist+ album+ disc+ track+.
Explicit sort orders override this default.

sort_album

Default sort order to use when fetching albums from the database. Defaults to albumartist+ album+. Explicit
sort orders override this default.

1.2. Reference 23

beets Documentation, Release 1.4.7

sort_case_insensitive

Either yes or no, indicating whether the case should be ignored when sorting lexicographic fields. When set to no,
lower-case values will be placed after upper-case values (e.g., Bar Qux foo), while yes would result in the more
expected Bar foo Qux. Default: yes.

original_date

Either yes or no, indicating whether matched albums should have their year, month, and day fields set to the
release date of the original version of an album rather than the selected version of the release. That is, if this option is
turned on, then year will always equal original_year and so on. Default: no.

artist_credit

Either yes or no, indicating whether matched tracks and albums should use the artist credit, rather than the artist.
That is, if this option is turned on, then artist will contain the artist as credited on the release.

per_disc_numbering

A boolean controlling the track numbering style on multi-disc releases. By default (per_disc_numbering:
no), tracks are numbered per-release, so the first track on the second disc has track number N+1 where N is the
number of tracks on the first disc. If this per_disc_numbering is enabled, then the first (non-pregap) track on
each disc always has track number 1.

If you enable per_disc_numbering, you will likely want to change your Path Format Configuration also to
include $disc before $track to make filenames sort correctly in album directories. For example, you might want
to use a path format like this:

paths:
default: $albumartist/$album%aunique{}/$disc-$track $title

When this option is off (the default), even “pregap” hidden tracks are numbered from one, not zero, so other track
numbers may appear to be bumped up by one. When it is on, the pregap track for each disc can be numbered zero.

terminal_encoding

The text encoding, as known to Python, to use for messages printed to the standard output. It’s also used to read
messages from the standard input. By default, this is determined automatically from the locale environment variables.

clutter

When beets imports all the files in a directory, it tries to remove the directory if it’s empty. A directory is considered
empty if it only contains files whose names match the glob patterns in clutter, which should be a list of strings. The
default list consists of “Thumbs.DB” and “.DS_Store”.

The importer only removes recursively searched subdirectories—the top-level directory you specify on the command
line is never deleted.

24 Chapter 1. Contents

http://docs.python.org/2/library/codecs.html#standard-encodings

beets Documentation, Release 1.4.7

max_filename_length

Set the maximum number of characters in a filename, after which names will be truncated. By default, beets tries to
ask the filesystem for the correct maximum.

id3v23

By default, beets writes MP3 tags using the ID3v2.4 standard, the latest version of ID3. Enable this option to instead
use the older ID3v2.3 standard, which is preferred by certain older software such as Windows Media Player.

va_name

Sets the albumartist for various-artist compilations. Defaults to 'Various Artists' (the MusicBrainz standard).
Affects other sources, such as Discogs Plugin, too.

UI Options

The options that allow for customization of the visual appearance of the console interface.

These options are available in this section:

color

Either yes or no; whether to use color in console output (currently only in the import command). Turn this off if
your terminal doesn’t support ANSI colors.

Note: The color option was previously a top-level configuration. This is still respected, but a deprecation message
will be shown until your top-level color configuration has been nested under ui.

colors

The colors that are used throughout the user interface. These are only used if the color option is set to yes. For
example, you might have a section in your configuration file that looks like this:

ui:
color: yes
colors:

text_success: green
text_warning: yellow
text_error: red
text_highlight: red
text_highlight_minor: lightgray
action_default: turquoise
action: blue

Available colors: black, darkred, darkgreen, brown (darkyellow), darkblue, purple (darkmagenta), teal (darkcyan),
lightgray, darkgray, red, green, yellow, blue, fuchsia (magenta), turquoise (cyan), white

1.2. Reference 25

beets Documentation, Release 1.4.7

Importer Options

The options that control the import command are indented under the import: key. For example, you might have a
section in your configuration file that looks like this:

import:
write: yes
copy: yes
resume: no

These options are available in this section:

write

Either yes or no, controlling whether metadata (e.g., ID3) tags are written to files when using beet import.
Defaults to yes. The -w and -W command-line options override this setting.

copy

Either yes or no, indicating whether to copy files into the library directory when using beet import. Defaults to
yes. Can be overridden with the -c and -C command-line options.

The option is ignored if move is enabled (i.e., beets can move or copy files but it doesn’t make sense to do both).

move

Either yes or no, indicating whether to move files into the library directory when using beet import. Defaults to
no.

The effect is similar to the copy option but you end up with only one copy of the imported file. (“Moving” works
even across filesystems; if necessary, beets will copy and then delete when a simple rename is impossible.) Moving
files can be risky—it’s a good idea to keep a backup in case beets doesn’t do what you expect with your files.

This option overrides copy, so enabling it will always move (and not copy) files. The -c switch to the beet
import command, however, still takes precedence.

link

Either yes or no, indicating whether to use symbolic links instead of moving or copying files. (It conflicts with the
move, copy and hardlink options.) Defaults to no.

This option only works on platforms that support symbolic links: i.e., Unixes. It will fail on Windows.

It’s likely that you’ll also want to set write to no if you use this option to preserve the metadata on the linked files.

hardlink

Either yes or no, indicating whether to use hard links instead of moving or copying or symlinking files. (It conflicts
with the move, copy, and link options.) Defaults to no.

As with symbolic links (see link, above), this will not work on Windows and you will want to set write to no.
Otherwise, metadata on the original file will be modified.

26 Chapter 1. Contents

beets Documentation, Release 1.4.7

resume

Either yes, no, or ask. Controls whether interrupted imports should be resumed. “Yes” means that imports are
always resumed when possible; “no” means resuming is disabled entirely; “ask” (the default) means that the user
should be prompted when resuming is possible. The -p and -P flags correspond to the “yes” and “no” settings and
override this option.

incremental

Either yes or no, controlling whether imported directories are recorded and whether these recorded directories are
skipped. This corresponds to the -i flag to beet import.

incremental_skip_later

Either yes or no, controlling whether skipped directories are recorded in the incremental list. Set this option to yes
if you would like to revisit skipped directories later whilst using incremental mode. Defaults to no.

from_scratch

Either yes or no (default), controlling whether existing metadata is discarded when a match is applied. This corre-
sponds to the --from_scratch flag to beet import.

quiet_fallback

Either skip (default) or asis, specifying what should happen in quiet mode (see the -q flag to import, above)
when there is no strong recommendation.

none_rec_action

Either ask (default), asis or skip. Specifies what should happen during an interactive import session when there
is no recommendation. Useful when you are only interested in processing medium and strong recommendations
interactively.

timid

Either yes or no, controlling whether the importer runs in timid mode, in which it asks for confirmation on every
autotagging match, even the ones that seem very close. Defaults to no. The -t command-line flag controls the same
setting.

log

Specifies a filename where the importer’s log should be kept. By default, no log is written. This can be overridden
with the -l flag to import.

1.2. Reference 27

beets Documentation, Release 1.4.7

default_action

One of apply, skip, asis, or none, indicating which option should be the default when selecting an action for a
given match. This is the action that will be taken when you type return without an option letter. The default is apply.

languages

A list of locale names to search for preferred aliases. For example, setting this to “en” uses the transliterated artist name
“Pyotr Ilyich Tchaikovsky” instead of the Cyrillic script for the composer’s name when tagging from MusicBrainz.
Defaults to an empty list, meaning that no language is preferred.

detail

Whether the importer UI should show detailed information about each match it finds. When enabled, this mode prints
out the title of every track, regardless of whether it matches the original metadata. (The default behavior only shows
changes.) Default: no.

group_albums

By default, the beets importer groups tracks into albums based on the directories they reside in. This option instead
uses files’ metadata to partition albums. Enable this option if you have directories that contain tracks from many
albums mixed together.

The --group-albums or -g option to the import command is equivalent, and the G interactive option invokes the
same workflow.

Default: no.

autotag

By default, the beets importer always attempts to autotag new music. If most of your collection consists of obscure
music, you may be interested in disabling autotagging by setting this option to no. (You can re-enable it with the -a
flag to the import command.)

Default: yes.

duplicate_action

Either skip, keep, remove, merge or ask. Controls how duplicates are treated in import task. “skip” means that
new item(album or track) will be skipped; “keep” means keep both old and new items; “remove” means remove old
item; “merge” means merge into one album; “ask” means the user should be prompted for the action each time. The
default is ask.

bell

Ring the terminal bell to get your attention when the importer needs your input.

Default: no.

28 Chapter 1. Contents

beets Documentation, Release 1.4.7

set_fields

A dictionary indicating fields to set to values for newly imported music. Here’s an example:

set_fields:
genre: 'To Listen'
collection: 'Unordered'

Other field/value pairs supplied via the --set option on the command-line override any settings here for fields with
the same name.

Default: {} (empty).

MusicBrainz Options

If you run your own MusicBrainz server, you can instruct beets to use it instead of the main server. Use the host and
ratelimit options under a musicbrainz: header, like so:

musicbrainz:
host: localhost:5000
ratelimit: 100

The host key, of course, controls the Web server hostname (and port, optionally) that will be contacted by beets
(default: musicbrainz.org). The ratelimit option, an integer, controls the number of Web service requests per
second (default: 1). Do not change the rate limit setting if you’re using the main MusicBrainz server—on this public
server, you’re limited to one request per second.

searchlimit

The number of matches returned when sending search queries to the MusicBrainz server.

Default: 5.

Autotagger Matching Options

You can configure some aspects of the logic beets uses when automatically matching MusicBrainz results under the
match: section. To control how tolerant the autotagger is of differences, use the strong_rec_thresh option,
which reflects the distance threshold below which beets will make a “strong recommendation” that the metadata be
used. Strong recommendations are accepted automatically (except in “timid” mode), so you can use this to make beets
ask your opinion more or less often.

The threshold is a distance value between 0.0 and 1.0, so you can think of it as the opposite of a similarity value. For
example, if you want to automatically accept any matches above 90% similarity, use:

match:
strong_rec_thresh: 0.10

The default strong recommendation threshold is 0.04.

The medium_rec_thresh and rec_gap_thresh options work similarly. When a match is below the medium
recommendation threshold or the distance between it and the next-best match is above the gap threshold, the importer
will suggest that match but not automatically confirm it. Otherwise, you’ll see a list of options to choose from.

1.2. Reference 29

http://musicbrainz.org/
http://musicbrainz.org/doc/XML_Web_Service/Rate_Limiting

beets Documentation, Release 1.4.7

max_rec

As mentioned above, autotagger matches have recommendations that control how the UI behaves for a certain quality
of match. The recommendation for a certain match is based on the overall distance calculation. But you can also
control the recommendation when a specific distance penalty is applied by defining maximum recommendations for
each field:

To define maxima, use keys under max_rec: in the match section. The defaults are “medium” for missing and
unmatched tracks and “strong” (i.e., no maximum) for everything else:

match:
max_rec:

missing_tracks: medium
unmatched_tracks: medium

If a recommendation is higher than the configured maximum and the indicated penalty is applied, the recommendation
is downgraded. The setting for each field can be one of none, low, medium or strong. When the maximum
recommendation is strong, no “downgrading” occurs. The available penalty names here are:

• source

• artist

• album

• media

• mediums

• year

• country

• label

• catalognum

• albumdisambig

• album_id

• tracks

• missing_tracks

• unmatched_tracks

• track_title

• track_artist

• track_index

• track_length

• track_id

preferred

In addition to comparing the tagged metadata with the match metadata for similarity, you can also specify an ordered
list of preferred countries and media types.

A distance penalty will be applied if the country or media type from the match metadata doesn’t match. The specified
values are preferred in descending order (i.e., the first item will be most preferred). Each item may be a regular

30 Chapter 1. Contents

beets Documentation, Release 1.4.7

expression, and will be matched case insensitively. The number of media will be stripped when matching preferred
media (e.g. “2x” in “2xCD”).

You can also tell the autotagger to prefer matches that have a release year closest to the original year for an album.

Here’s an example:

match:
preferred:

countries: ['US', 'GB|UK']
media: ['CD', 'Digital Media|File']
original_year: yes

By default, none of these options are enabled.

ignored

You can completely avoid matches that have certain penalties applied by adding the penalty name to the ignored
setting:

match:
ignored: missing_tracks unmatched_tracks

The available penalties are the same as those for the max_rec setting.

required

You can avoid matches that lack certain required information. Add the tags you want to enforce to the required
setting:

match:
required: year label catalognum country

No tags are required by default.

ignored_media

A list of media (i.e., formats) in metadata databases to ignore when matching music. You can use this to ignore all
media that usually contain video instead of audio, for example:

match:
ignored_media: ['Data CD', 'DVD', 'DVD-Video', 'Blu-ray', 'HD-DVD',

'VCD', 'SVCD', 'UMD', 'VHS']

No formats are ignored by default.

ignore_video_tracks

By default, video tracks within a release will be ignored. If you want them to be included (for example if you would
like to track the audio-only versions of the video tracks), set it to no.

Default: yes.

1.2. Reference 31

beets Documentation, Release 1.4.7

Path Format Configuration

You can also configure the directory hierarchy beets uses to store music. These settings appear under the paths: key.
Each string is a template string that can refer to metadata fields like $artist or $title. The filename extension
is added automatically. At the moment, you can specify three special paths: default for most releases, comp for
“various artist” releases with no dominant artist, and singleton for non-album tracks. The defaults look like this:

paths:
default: $albumartist/$album%aunique{}/$track $title
singleton: Non-Album/$artist/$title
comp: Compilations/$album%aunique{}/$track $title

Note the use of $albumartist instead of $artist; this ensures that albums will be well-organized. For more
about these format strings, see Path Formats. The aunique{} function ensures that identically-named albums are
placed in different directories; see Album Disambiguation for details.

In addition to default, comp, and singleton, you can condition path queries based on beets queries (see
Queries). This means that a config file like this:

paths:
albumtype:soundtrack: Soundtracks/$album/$track $title

will place soundtrack albums in a separate directory. The queries are tested in the order they appear in the configuration
file, meaning that if an item matches multiple queries, beets will use the path format for the first matching query.

Note that the special singleton and comp path format conditions are, in fact, just shorthand for the explicit queries
singleton:true and comp:true. In contrast, default is special and has no query equivalent: the default
format is only used if no queries match.

Configuration Location

The beets configuration file is usually located in a standard location that depends on your OS, but there are a couple of
ways you can tell beets where to look.

Environment Variable

First, you can set the BEETSDIR environment variable to a directory containing a config.yaml file. This replaces
your configuration in the default location. This also affects where auxiliary files, like the library database, are stored
by default (that’s where relative paths are resolved to). This environment variable is useful if you need to manage
multiple beets libraries with separate configurations.

Command-Line Option

Alternatively, you can use the --config command-line option to indicate a YAML file containing options that will
then be merged with your existing options (from BEETSDIR or the default locations). This is useful if you want to
keep your configuration mostly the same but modify a few options as a batch. For example, you might have different
strategies for importing files, each with a different set of importer options.

Default Location

In the absence of a BEETSDIR variable, beets searches a few places for your configuration, depending on the platform:

32 Chapter 1. Contents

beets Documentation, Release 1.4.7

• On Unix platforms, including OS X:~/.config/beets and then $XDG_CONFIG_DIR/beets, if the en-
vironment variable is set.

• On OS X, we also search ~/Library/Application Support/beets before the Unixy locations.

• On Windows: ~\AppData\Roaming\beets, and then %APPDATA%\beets, if the environment variable
is set.

Beets uses the first directory in your platform’s list that contains config.yaml. If no config file exists, the last path
in the list is used.

Example

Here’s an example file:

directory: /var/mp3
import:

copy: yes
write: yes
log: beetslog.txt

art_filename: albumart
plugins: bpd
pluginpath: ~/beets/myplugins
ui:

color: yes

paths:
default: $genre/$albumartist/$album/$track $title
singleton: Singletons/$artist - $title
comp: $genre/$album/$track $title
albumtype:soundtrack: Soundtracks/$album/$track $title

1.2.3 Path Formats

The paths: section of the config file (see Configuration) lets you specify the directory and file naming scheme for
your music library. Templates substitute symbols like $title (any field value prefixed by $) with the appropriate
value from the track’s metadata. Beets adds the filename extension automatically.

For example, consider this path format string: $albumartist/$album/$track $title

Here are some paths this format will generate:

• Yeah Yeah Yeahs/It's Blitz!/01 Zero.mp3

• Spank Rock/YoYoYoYoYo/11 Competition.mp3

• The Magnetic Fields/Realism/01 You Must Be Out of Your Mind.mp3

Because $ is used to delineate a field reference, you can use $$ to emit a dollars sign. As with Python template strings,
${title} is equivalent to $title; you can use this if you need to separate a field name from the text that follows
it.

A Note About Artists

Note that in path formats, you almost certainly want to use $albumartist and not $artist. The latter refers to
the “track artist” when it is present, which means that albums that have tracks from different artists on them (like Stop
Making Sense, for example) will be placed into different folders! Continuing with the Stop Making Sense example,

1.2. Reference 33

http://docs.python.org/library/string.html#template-strings
http://musicbrainz.org/release/798dcaab-0f1a-4f02-a9cb-61d5b0ddfd36.html
http://musicbrainz.org/release/798dcaab-0f1a-4f02-a9cb-61d5b0ddfd36.html

beets Documentation, Release 1.4.7

you’ll end up with most of the tracks in a “Talking Heads” directory and one in a “Tom Tom Club” directory. You
probably don’t want that! So use $albumartist.

As a convenience, however, beets allows $albumartist to fall back to the value for $artist and vice-versa if
one tag is present but the other is not.

Template Functions

Beets path formats also support function calls, which can be used to transform text and perform logical manipulations.
The syntax for function calls is like this: %func{arg,arg}. For example, the upper function makes its argument
upper-case, so %upper{beets rocks} will be replaced with BEETS ROCKS. You can, of course, nest function
calls and place variable references in function arguments, so %upper{$artist} becomes the upper-case version
of the track’s artists.

These functions are built in to beets:

• %lower{text}: Convert text to lowercase.

• %upper{text}: Convert text to UPPERCASE.

• %title{text}: Convert text to Title Case.

• %left{text,n}: Return the first n characters of text.

• %right{text,n}: Return the last n characters of text.

• %if{condition,text} or %if{condition,truetext,falsetext}: If condition is nonempty
(or nonzero, if it’s a number), then returns the second argument. Otherwise, returns the third argument if
specified (or nothing if falsetext is left off).

• %asciify{text}: Convert non-ASCII characters to their ASCII equivalents. For example, “café” becomes
“cafe”. Uses the mapping provided by the unidecode module. See the asciify_paths configuration option.

• %aunique{identifiers,disambiguators,brackets}: Provides a unique string to disambiguate
similar albums in the database. See Album Disambiguation, below.

• %time{date_time,format}: Return the date and time in any format accepted by strftime. For example,
to get the year some music was added to your library, use %time{$added,%Y}.

• %first{text}: Returns the first item, separated by ; (a semicolon followed by a space). You can use
%first{text,count,skip}, where count is the number of items (default 1) and skip is number to
skip (default 0). You can also use %first{text,count,skip,sep,join} where sep is the separator,
like ; or / and join is the text to concatenate the items.

• %ifdef{field}, %ifdef{field,truetext} or %ifdef{field,truetext,falsetext}:
Checks if an flexible attribute field is defined. If it exists, then return truetext or field (default).
Otherwise, returns falsetext. The field should be entered without $. Note that this doesn’t work with
built-in Available Values, as they are always defined.

Plugins can extend beets with more template functions (see Template functions and values provided by plugins).

Album Disambiguation

Occasionally, bands release two albums with the same name (c.f. Crystal Castles, Weezer, and any situation where
a single has the same name as an album or EP). Beets ships with special support, in the form of the %aunique{}
template function, to avoid placing two identically-named albums in the same directory on disk.

The aunique function detects situations where two albums have some identical fields and emits text from additional
fields to disambiguate the albums. For example, if you have both Crystal Castles albums in your library, %aunique{}

34 Chapter 1. Contents

http://pypi.python.org/pypi/Unidecode
http://docs.python.org/2/library/time.html#time.strftime

beets Documentation, Release 1.4.7

will expand to “[2008]” for one album and “[2010]” for the other. The function detects that you have two albums with
the same artist and title but that they have different release years.

For full flexibility, the %aunique function takes three arguments. The first two are whitespace-separated lists of
album field names: a set of identifiers and a set of disambiguators. The third argument is a pair of characters used to
surround the disambiguator.

Any group of albums with identical values for all the identifiers will be considered “duplicates”. Then, the function
tries each disambiguator field, looking for one that distinguishes each of the duplicate albums from each other. The
first such field is used as the result for %aunique. If no field suffices, an arbitrary number is used to distinguish the
two albums.

The default identifiers are albumartist album and the default disambiguators are albumtype year
label catalognum albumdisambig. So you can get reasonable disambiguation behavior if you just use
%aunique{} with no parameters in your path forms (as in the default path formats), but you can customize the
disambiguation if, for example, you include the year by default in path formats.

The default characters used as brackets are []. To change this, provide a third argument to the %aunique function
consisting of two characters: the left and right brackets. Or, to turn off bracketing entirely, leave argument blank.

One caveat: When you import an album that is named identically to one already in your library, the first album—the
one already in your library— will not consider itself a duplicate at import time. This means that %aunique{} will
expand to nothing for this album and no disambiguation string will be used at its import time. Only the second album
will receive a disambiguation string. If you want to add the disambiguation string to both albums, just run beet
move (possibly restricted by a query) to update the paths for the albums.

Syntax Details

The characters $, %, {, }, and , are “special” in the path template syntax. This means that, for example, if you want
a % character to appear in your paths, you’ll need to be careful that you don’t accidentally write a function call. To
escape any of these characters (except {, and , outside a function argument), prefix it with a $. For example, $$
becomes $; $% becomes %, etc. The only exceptions are:

• ${, which is ambiguous with the variable reference syntax (like ${title}). To insert a { alone, it’s always
sufficient to just type {.

• commas are used as argument separators in function calls. Inside of a function’s argument, use $, to get a
literal , character. Outside of any function argument, escaping is not necessary: , by itself will produce , in
the output.

If a value or function is undefined, the syntax is simply left unreplaced. For example, if you write $foo in a path
template, this will yield $foo in the resulting paths because “foo” is not a valid field name. The same is true of syntax
errors like unclosed {} pairs; if you ever see template syntax constructs leaking into your paths, check your template
for errors.

If an error occurs in the Python code that implements a function, the function call will be expanded to a string that
describes the exception so you can debug your template. For example, the second parameter to %left must be an
integer; if you write %left{foo,bar}, this will be expanded to something like <ValueError: invalid
literal for int()>.

Available Values

Here’s a list of the different values available to path formats. The current list can be found definitively by running
the command beet fields. Note that plugins can add new (or replace existing) template values (see Template
functions and values provided by plugins).

Ordinary metadata:

1.2. Reference 35

beets Documentation, Release 1.4.7

• title

• artist

• artist_sort: The “sort name” of the track artist (e.g., “Beatles, The” or “White, Jack”).

• artist_credit: The track-specific artist credit name, which may be a variation of the artist’s “canonical” name.

• album

• albumartist: The artist for the entire album, which may be different from the artists for the individual tracks.

• albumartist_sort

• albumartist_credit

• genre

• composer

• grouping

• year, month, day: The release date of the specific release.

• original_year, original_month, original_day: The release date of the original version of the album.

• track

• tracktotal

• disc

• disctotal

• lyrics

• comments

• bpm

• comp: Compilation flag.

• albumtype: The MusicBrainz album type; the MusicBrainz wiki has a list of type names.

• label

• asin

• catalognum

• script

• language

• country

• albumstatus

• media

• albumdisambig

• disctitle

• encoder

Audio information:

• length (in seconds)

• bitrate (in kilobits per second, with units: e.g., “192kbps”)

36 Chapter 1. Contents

http://wiki.musicbrainz.org/Artist_Credit
http://musicbrainz.org/doc/Release_Group/Type

beets Documentation, Release 1.4.7

• format (e.g., “MP3” or “FLAC”)

• channels

• bitdepth (only available for some formats)

• samplerate (in kilohertz, with units: e.g., “48kHz”)

MusicBrainz and fingerprint information:

• mb_trackid

• mb_releasetrackid

• mb_albumid

• mb_artistid

• mb_albumartistid

• mb_releasegroupid

• acoustid_fingerprint

• acoustid_id

Library metadata:

• mtime: The modification time of the audio file.

• added: The date and time that the music was added to your library.

• path: The item’s filename.

Template functions and values provided by plugins

Beets plugins can provide additional fields and functions to templates. See the Plugins page for a full list of plugins.
Some plugin-provided constructs include:

• $missing by Missing Plugin: The number of missing tracks per album.

• %bucket{text} by Bucket Plugin: Substitute a string by the range it belongs to.

• %the{text} by The Plugin: Moves English articles to ends of strings.

The Inline Plugin lets you define template fields in your beets configuration file using Python snippets. And for more
advanced processing, you can go all-in and write a dedicated plugin to register your own fields and functions (see
Writing Plugins).

1.2.4 Queries

Many of beets’ commands are built around query strings: searches that select tracks and albums from your library.
This page explains the query string syntax, which is meant to vaguely resemble the syntax used by Web search engines.

Keyword

This command:

$ beet list love

1.2. Reference 37

beets Documentation, Release 1.4.7

will show all tracks matching the query string love. By default any unadorned word like this matches in a track’s
title, artist, album name, album artist, genre and comments. See below on how to search other fields.

For example, this is what I might see when I run the command above:

Against Me! - Reinventing Axl Rose - I Still Love You Julie
Air - Love 2 - Do the Joy
Bag Raiders - Turbo Love - Shooting Stars
Bat for Lashes - Two Suns - Good Love
...

Combining Keywords

Multiple keywords are implicitly joined with a Boolean “and.” That is, if a query has two keywords, it only matches
tracks that contain both keywords. For example, this command:

$ beet ls magnetic tomorrow

matches songs from the album “The House of Tomorrow” by The Magnetic Fields in my library. It doesn’t match
other songs by the Magnetic Fields, nor does it match “Tomorrowland” by Walter Meego—those songs only have one
of the two keywords I specified.

Keywords can also be joined with a Boolean “or” using a comma. For example, the command:

$ beet ls magnetic tomorrow , beatles yesterday

will match both “The House of Tomorrow” by the Magnetic Fields, as well as “Yesterday” by The Beatles. Note that
the comma has to be followed by a space (e.g., foo,bar will be treated as a single keyword, not as an OR-query).

Specific Fields

Sometimes, a broad keyword match isn’t enough. Beets supports a syntax that lets you query a specific field—only
the artist, only the track title, and so on. Just say field:value, where field is the name of the thing you’re trying
to match (such as artist, album, or title) and value is the keyword you’re searching for.

For example, while this query:

$ beet list dream

matches a lot of songs in my library, this more-specific query:

$ beet list artist:dream

only matches songs by the artist The-Dream. One query I especially appreciate is one that matches albums by year:

$ beet list -a year:2012

Recall that -a makes the list command show albums instead of individual tracks, so this command shows me all
the releases I have from this year.

Phrases

You can query for strings with spaces in them by quoting or escaping them using your shell’s argument syntax. For
example, this command:

38 Chapter 1. Contents

beets Documentation, Release 1.4.7

$ beet list the rebel

shows several tracks in my library, but these (equivalent) commands:

$ beet list "the rebel"
$ beet list the\ rebel

only match the track “The Rebel” by Buck 65. Note that the quotes and backslashes are not part of beets’ syntax; I’m
just using the escaping functionality of my shell (bash or zsh, for instance) to pass the rebel as a single argument
instead of two.

Regular Expressions

While ordinary keywords perform simple substring matches, beets also supports regular expression matching for more
advanced queries. To run a regex query, use an additional : between the field name and the expression:

$ beet list "artist::Ann(a|ie)"

That query finds songs by Anna Calvi and Annie but not Annuals. Similarly, this query prints the path to any file in
my library that’s missing a track title:

$ beet list -p title::^$

To search all fields using a regular expression, just prefix the expression with a single :, like so:

$ beet list ":Ho[pm]eless"

Regular expressions are case-sensitive and build on Python’s built-in implementation. See Python’s documentation for
specifics on regex syntax.

Most command-line shells will try to interpret common characters in regular expressions, such as ()[]|. To type
those characters, you’ll need to escape them (e.g., with backslashes or quotation marks, depending on your shell).

Numeric Range Queries

For numeric fields, such as year, bitrate, and track, you can query using one- or two-sided intervals. That is, you can
find music that falls within a range of values. To use ranges, write a query that has two dots (..) at the beginning,
middle, or end of a string of numbers. Dots in the beginning let you specify a maximum (e.g., ..7); dots at the end
mean a minimum (4..); dots in the middle mean a range (4..7).

For example, this command finds all your albums that were released in the ’90s:

$ beet list -a year:1990..1999

and this command finds MP3 files with bitrates of 128k or lower:

$ beet list format:MP3 bitrate:..128000

The length field also lets you use a “M:SS” format. For example, this query finds tracks that are less than four and
a half minutes in length:

$ beet list length:..4:30

1.2. Reference 39

http://docs.python.org/library/re.html

beets Documentation, Release 1.4.7

Date and Date Range Queries

Date-valued fields, such as added and mtime, have a special query syntax that lets you specify years, months, and days
as well as ranges between dates.

Dates are written separated by hyphens, like year-month-day, but the month and day are optional. If you leave
out the day, for example, you will get matches for the whole month.

Date intervals, like the numeric intervals described above, are separated by two dots (..). You can specify a start, an
end, or both.

Here is an example that finds all the albums added in 2008:

$ beet ls -a 'added:2008'

Find all items added in the years 2008, 2009 and 2010:

$ beet ls 'added:2008..2010'

Find all items added before the year 2010:

$ beet ls 'added:..2009'

Find all items added on or after 2008-12-01 but before 2009-10-12:

$ beet ls 'added:2008-12..2009-10-11'

Find all items with a file modification time between 2008-12-01 and 2008-12-03:

$ beet ls 'mtime:2008-12-01..2008-12-02'

You can also add an optional time value to date queries, specifying hours, minutes, and seconds.

Times are separated from dates by a space, an uppercase ‘T’ or a lowercase ‘t’, for example:
2008-12-01T23:59:59. If you specify a time, then the date must contain a year, month, and day. The min-
utes and seconds are optional.

Here is an example that finds all items added on 2008-12-01 at or after 22:00 but before 23:00:

$ beet ls 'added:2008-12-01T22'

To find all items added on or after 2008-12-01 at 22:45:

$ beet ls 'added:2008-12-01T22:45..'

To find all items added on 2008-12-01, at or after 22:45:20 but before 22:45:41:

$ beet ls 'added:2008-12-01T22:45:20..2008-12-01T22:45:40'

Here are example of the three ways to separate dates from times. All of these queries do the same thing:

$ beet ls 'added:2008-12-01T22:45:20'
$ beet ls 'added:2008-12-01t22:45:20'
$ beet ls 'added:2008-12-01 22:45:20'

You can also use relative dates. For example, -3w means three weeks ago, and +4d means four days in the future. A
relative date has three parts:

• Either + or -, to indicate the past or the future. The sign is optional; if you leave this off, it defaults to the future.

40 Chapter 1. Contents

beets Documentation, Release 1.4.7

• A number.

• A letter indicating the unit: d, w, m or y, meaning days, weeks, months or years. (A “month” is always 30 days
and a “year” is always 365 days.)

Here’s an example that finds all the albums added since last week:

$ beet ls -a 'added:-1w..'

And here’s an example that lists items added in a two-week period starting four weeks ago:

$ beet ls 'added:-6w..-4w'

Query Term Negation

Query terms can also be negated, acting like a Boolean “not,” by prefixing them with - or ^. This has the effect of
returning all the items that do not match the query term. For example, this command:

$ beet list ^love

matches all the songs in the library that do not have “love” in any of their fields.

Negation can be combined with the rest of the query mechanisms, so you can negate specific fields, regular expressions,
etc. For example, this command:

$ beet list -a artist:dylan ^year:1980..1989 "^album::the(y)?"

matches all the albums with an artist containing “dylan”, but excluding those released in the eighties and those that
have “the” or “they” on the title.

The syntax supports both ^ and - as synonyms because the latter indicates flags on the command line. To use a minus
sign in a command-line query, use a double dash -- to separate the options from the query:

$ beet list -a -- artist:dylan -year:1980..1990 "-album::the(y)?"

Path Queries

Sometimes it’s useful to find all the items in your library that are (recursively) inside a certain directory. Use the
path: field to do this:

$ beet list path:/my/music/directory

In fact, beets automatically recognizes any query term containing a path separator (/ on POSIX systems) as a path
query if that path exists, so this command is equivalent as long as /my/music/directory exist:

$ beet list /my/music/directory

Note that this only matches items that are already in your library, so a path query won’t necessarily find all the audio
files in a directory—just the ones you’ve already added to your beets library.

Path queries are case sensitive if the queried path is on a case-sensitive filesystem.

Sort Order

Queries can specify a sort order. Use the name of the field you want to sort on, followed by a + or - sign to indicate
ascending or descending sort. For example, this command:

1.2. Reference 41

beets Documentation, Release 1.4.7

$ beet list -a year+

will list all albums in chronological order. You can also specify several sort orders, which will be used in the same
order as they appear in your query:

$ beet list -a genre+ year+

This command will sort all albums by genre and, in each genre, in chronological order.

The artist and albumartist keys are special: they attempt to use their corresponding artist_sort and
albumartist_sort fields for sorting transparently (but fall back to the ordinary fields when those are empty).

Lexicographic sorts are case insensitive by default, resulting in the following sort order: Bar foo Qux. This behav-
ior can be changed with the sort_case_insensitive configuration option. Case sensitive sort will result in lower-case
values being placed after upper-case values, e.g., Bar Qux foo.

Note that when sorting by fields that are not present on all items (such as flexible fields, or those defined by plugins)
in ascending order, the items that lack that particular field will be listed at the beginning of the list.

You can set the default sorting behavior with the sort_item and sort_album configuration options.

1.3 Plugins

Plugins extend beets’ core functionality. They add new commands, fetch additional data during import, provide new
metadata sources, and much more. If beets by itself doesn’t do what you want it to, you may just need to enable a
plugin—or, if you want to do something new, writing a plugin is easy if you know a little Python.

1.3.1 Using Plugins

To use one of the plugins included with beets (see the rest of this page for a list), just use the plugins option in your
config.yaml file, like so:

plugins: inline convert web

The value for plugins can be a space-separated list of plugin names or a YAML list like [foo, bar]. You can see
which plugins are currently enabled by typing beet version.

Each plugin has its own set of options that can be defined in a section bearing its name:

plugins: inline convert web

convert:
auto: true

Some plugins have special dependencies that you’ll need to install. The documentation page for each plugin will list
them in the setup instructions. For some, you can use pip’s “extras” feature to install the dependencies, like this:

pip install beets[fetchart,lyrics,lastgenre]

AcousticBrainz Submit Plugin

The absubmit plugin lets you submit acoustic analysis results to the AcousticBrainz server.

42 Chapter 1. Contents

https://acousticbrainz.org

beets Documentation, Release 1.4.7

Installation

The absubmit plugin requires the streaming_extractor_music program to run. Its source can be found on GitHub, and
while it is possible to compile the extractor from source, AcousticBrainz would prefer if you used their binary (see the
AcousticBrainz FAQ).

The absubmit also plugin requires requests, which you can install using pip by typing:

pip install requests

After installing both the extractor binary and requests you can enable the plugin absubmit in your configuration (see
Using Plugins).

Submitting Data

Type:

beet absubmit [QUERY]

to run the analysis program and upload its results.

The plugin works on music with a MusicBrainz track ID attached. The plugin will also skip music that the analysis
tool doesn’t support. streaming_extractor_music currently supports files with the extensions mp3, ogg, oga, flac,
mp4, m4a, m4r, m4b, m4p, aac, wma, asf, mpc, wv, spx, tta, 3g2, aif, aiff and ape.

Configuration

To configure the plugin, make a absubmit: section in your configuration file. The available options are:

• auto: Analyze every file on import. Otherwise, you need to use the beet absubmit command explicitly.
Default: no

• extractor: The absolute path to the streaming_extractor_music binary. Default: search for the program in your
$PATH

AcousticBrainz Plugin

The acousticbrainz plugin gets acoustic-analysis information from the AcousticBrainz project.

Enable the acousticbrainz plugin in your configuration (see Using Plugins) and run it by typing:

$ beet acousticbrainz [-f] [QUERY]

By default, the command will only look for AcousticBrainz data when the tracks doesn’t already have it; the -f or
--force switch makes it re-download data even when it already exists. If you specify a query, only matching tracks
will be processed; otherwise, the command processes every track in your library.

For all tracks with a MusicBrainz recording ID, the plugin currently sets these fields:

• average_loudness

• bpm

• chords_changes_rate

• chords_key

1.3. Plugins 43

http://acousticbrainz.org/download
https://github.com/MTG/essentia
http://acousticbrainz.org/faq
http://docs.python-requests.org/en/master/
http://www.pip-installer.org/
http://acousticbrainz.org/download
http://acousticbrainz.org/download
http://acousticbrainz.org/

beets Documentation, Release 1.4.7

• chords_number_rate

• chords_scale

• danceable

• gender

• genre_rosamerica

• initial_key (This is a built-in beets field, which can also be provided by Key Finder Plugin.)

• key_strength

• mood_acoustic

• mood_aggressive

• mood_electronic

• mood_happy

• mood_party

• mood_relaxed

• mood_sad

• rhythm

• tonal

• voice_instrumental

Automatic Tagging

To automatically tag files using AcousticBrainz data during import, just enable the acousticbrainz plugin (see
Using Plugins). When importing new files, beets will query the AcousticBrainz API using MBID and set the appro-
priate metadata.

Configuration

To configure the plugin, make a acousticbrainz: section in your configuration file. There are three options:

• auto: Enable AcousticBrainz during beet import. Default: yes.

• force: Download AcousticBrainz data even for tracks that already have it. Default: no.

• tags: Which tags from the list above to set on your files. Default: [] (all)

Bad Files Plugin

The badfiles plugin adds a beet bad command to check for missing and corrupt files.

Configuring

First, enable the badfiles plugin (see Using Plugins). The default configuration defines the following default
checkers, which you may need to install yourself:

• mp3val for MP3 files

44 Chapter 1. Contents

http://mp3val.sourceforge.net/

beets Documentation, Release 1.4.7

• FLAC command-line tools for FLAC files

You can also add custom commands for a specific extension, like this:

badfiles:
commands:

ogg: myoggchecker --opt1 --opt2
flac: flac --test --warnings-as-errors --silent

Custom commands will be run once for each file of the specified type, with the path to the file as the last argument.
Commands must return a status code greater than zero for a file to be considered corrupt.

Using

Type beet bad with a query according to beets’ usual query syntax. For instance, this will run a check on all songs
containing the word “wolf”:

beet bad wolf

This one will run checks on a specific album:

beet bad album_id:1234

Here is an example where the FLAC decoder signals a corrupt file:

beet bad title::^$
/tank/Music/__/00.flac: command exited with status 1

00.flac: *** Got error code 2:FLAC__STREAM_DECODER_ERROR_STATUS_FRAME_CRC_MISMATCH
00.flac: ERROR while decoding data

state = FLAC__STREAM_DECODER_READ_FRAME

Note that the default mp3val checker is a bit verbose and can output a lot of “stream error” messages, even for files
that play perfectly well. Generally, if more than one stream error happens, or if a stream error happens in the middle
of a file, this is a bad sign.

By default, only errors for the bad files will be shown. In order for the results for all of the checked files to be seen,
including the uncorrupted ones, use the -v or --verbose option.

Beatport Plugin

The beatport plugin adds support for querying the Beatport catalogue during the autotagging process. This can
potentially be helpful for users whose collection includes a lot of diverse electronic music releases, for which both
MusicBrainz and (to a lesser degree) Discogs show no matches.

Installation

To use the beatport plugin, first enable it in your configuration (see Using Plugins). Then, install the requests and
requests_oauthlib libraries (which we need for querying and authorizing with the Beatport API) by typing:

pip install requests requests_oauthlib

You will also need to register for a Beatport account. The first time you run the import command after enabling the
plugin, it will ask you to authorize with Beatport by visiting the site in a browser. On the site you will be asked to enter
your username and password to authorize beets to query the Beatport API. You will then be displayed with a single

1.3. Plugins 45

https://xiph.org/flac/
http://beatport.com
http://docs.python-requests.org/en/latest/
https://github.com/requests/requests-oauthlib
http://beatport.com

beets Documentation, Release 1.4.7

line of text that you should paste into your terminal. This will store the authentication data for subsequent runs and
you will not be required to repeat the above steps.

Matches from Beatport should now show up alongside matches from MusicBrainz and other sources.

If you have a Beatport ID or a URL for a release or track you want to tag, you can just enter one of the two at the
“enter Id” prompt in the importer.

BPD Plugin

BPD is a music player using music from a beets library. It runs as a daemon and implements the MPD protocol, so it’s
compatible with all the great MPD clients out there. I’m using Theremin, gmpc, Sonata, and Ario successfully.

Dependencies

Before you can use BPD, you’ll need the media library called GStreamer (along with its Python bindings) on your
system.

• On Mac OS X, you can use Homebrew. Run brew install gstreamer gst-plugins-base
pygobject3.

• On Linux, you need to install GStreamer 1.0 and the GObject bindings for python. Under Ubuntu, they are
called python-gi and gstreamer1.0.

• On Windows, you may want to try GStreamer WinBuilds (caveat emptor: I haven’t tried this).

You will also need the various GStreamer plugin packages to make everything work. See the Chromaprint/Acoustid
Plugin documentation for more information on installing GStreamer plugins.

Usage

To use the bpd plugin, first enable it in your configuration (see Using Plugins). Then, you can run BPD by invoking:

$ beet bpd

Fire up your favorite MPD client to start playing music. The MPD site has a long list of available clients. Here are my
favorites:

• Linux: gmpc, Sonata

• Mac: Theremin

• Windows: I don’t know. Get in touch if you have a recommendation.

• iPhone/iPod touch: MPoD

One nice thing about MPD’s (and thus BPD’s) client-server architecture is that the client can just as easily on a different
computer from the server as it can be run locally. Control your music from your laptop (or phone!) while it plays on
your headless server box. Rad!

Configuration

To configure the plugin, make a bpd: section in your configuration file. The available options are:

• host: Default: Bind to all interfaces.

• port: Default: 6600

46 Chapter 1. Contents

https://theremin.sigterm.eu/
http://gmpc.wikia.com/wiki/Gnome_Music_Player_Client
http://sonata.berlios.de/
http://ario-player.sourceforge.net/
http://mxcl.github.com/homebrew/
http://www.gstreamer-winbuild.ylatuya.es/
http://mpd.wikia.com/wiki/Clients
http://gmpc.wikia.com/wiki/Gnome_Music_Player_Client
http://sonata.berlios.de/
https://theremin.sigterm.eu/
http://www.katoemba.net/makesnosenseatall/mpod/

beets Documentation, Release 1.4.7

• password: Default: No password.

• volume: Initial volume, as a percentage. Default: 100

Here’s an example:

bpd:
host: 127.0.0.1
port: 6600
password: seekrit
volume: 100

Implementation Notes

In the real MPD, the user can browse a music directory as it appears on disk. In beets, we like to abstract away from
the directory structure. Therefore, BPD creates a “virtual” directory structure (artist/album/track) to present to clients.
This is static for now and cannot be reconfigured like the real on-disk directory structure can. (Note that an obvious
solution to this is just string matching on items’ destination, but this requires examining the entire library Python-side
for every query.)

We don’t currently support versioned playlists. Many clients, however, use plchanges instead of playlistinfo to get the
current playlist, so plchanges contains a dummy implementation that just calls playlistinfo.

The stats command always send zero for playtime, which is supposed to indicate the amount of time the server
has spent playing music. BPD doesn’t currently keep track of this.

The update command regenerates the directory tree from the beets database.

Unimplemented Commands

These are the commands from the MPD protocol that have not yet been implemented in BPD.

Saved playlists:

• playlistclear

• playlistdelete

• playlistmove

• playlistadd

• playlistsearch

• listplaylist

• listplaylistinfo

• playlistfind

• rm

• save

• load

• rename

Deprecated:

• playlist

• volume

1.3. Plugins 47

http://www.musicpd.org/doc/protocol/

beets Documentation, Release 1.4.7

BPM Plugin

This bpm plugin lets you to get the tempo (beats per minute) of a song by tapping out the beat on your keyboard.

Usage

To use the bpm plugin, first enable it in your configuration (see Using Plugins).

Then, play a song you want to measure in your favorite media player and type:

beet bpm <song>

You’ll be prompted to press Enter three times to the rhythm. This typically allows to determine the BPM within 5%
accuracy.

The plugin works best if you wrap it in a script that gets the playing song. for instance, with mpc you can do something
like:

beet bpm $(mpc |head -1|tr -d "-")

If import.write is yes, the song’s tags are written to disk.

Configuration

To configure the plugin, make a bpm: section in your configuration file. The available options are:

• max_strokes: The maximum number of strokes to accept when tapping out the BPM. Default: 3.

• overwrite: Overwrite the track’s existing BPM. Default: yes.

Credit

This plugin is inspired by a similar feature present in the Banshee media player.

Bucket Plugin

The bucket plugin groups your files into buckets folders representing ranges. This kind of organization can classify
your music by periods of time (e.g,. 1960s, 1970s, etc.), or divide overwhelmingly large folders into smaller subfolders
by grouping albums or artists alphabetically (e.g. A-F, G-M, N-Z).

To use the bucket plugin, first enable it in your configuration (see Using Plugins). The plugin provides a template
function called %bucket for use in path format expressions:

paths:
default: /%bucket{$year}/%bucket{$artist}/$albumartist-$album-$year

Then, define your ranges in the bucket: section of the config file:

bucket:
bucket_alpha: ['A-F', 'G-M', 'N-Z']
bucket_year: ['1980s', '1990s', '2000s']

48 Chapter 1. Contents

beets Documentation, Release 1.4.7

The bucket_year parameter is used for all substitutions occuring on the $year field, while bucket_alpha
takes care of textual fields.

The definition of a range is somewhat loose, and multiple formats are allowed:

• For alpha ranges: the range is defined by the lowest and highest (ASCII-wise) alphanumeric characters in the
string you provide. For example, ABCD, A-D, A->D, and [AD] are all equivalent.

• For year ranges: digits characters are extracted and the two extreme years define the range. For example, 1975-
77, 1975,76,77 and 1975-1977 are equivalent. If no upper bound is given, the range is extended to current year
(unless a later range is defined). For example, 1975 encompasses all years from 1975 until now.

Configuration

To configure the plugin, make a bucket: section in your configuration file. The available options are:

• bucket_alpha: Ranges to use for all substitutions occurring on textual fields. Default: none.

• bucket_alpha_regex: A range: regex mapping (one per line) where range is one of the bucket_alpha
ranges and value is a regex that overrides original range definition. Default: none.

• bucket_year: Ranges to use for all substitutions occurring on the $year field. Default: none.

• extrapolate: Enable this if you want to group your files into multiple year ranges without enumerating them all.
This option will generate year bucket names by reproducing characteristics of declared buckets. Default: no

Here’s an example:

bucket:
bucket_year: ['2000-05']
extrapolate: true
bucket_alpha: ['A - D', 'E - L', 'M - R', 'S - Z']
bucket_alpha_regex:

'A - D': ^[0-9a-dA-D...äÄ]

This configuration creates five-year ranges for any input year. The A - D bucket now matches also all artists starting
with ä or Ä and 0 to 9 and . . . (ellipsis). The other alpha buckets work as ranges.

Chromaprint/Acoustid Plugin

Acoustic fingerprinting is a technique for identifying songs from the way they “sound” rather from their existing
metadata. That means that beets’ autotagger can theoretically use fingerprinting to tag files that don’t have any ID3
information at all (or have completely incorrect data). This plugin uses an open-source fingerprinting technology
called Chromaprint and its associated Web service, called Acoustid.

Turning on fingerprinting can increase the accuracy of the autotagger—especially on files with very poor meta-
data—but it comes at a cost. First, it can be trickier to set up than beets itself (you need to set up the native fin-
gerprinting library, whereas all of the beets core is written in pure Python). Also, fingerprinting takes significantly
more CPU and memory than ordinary tagging—which means that imports will go substantially slower.

If you’re willing to pay the performance cost for fingerprinting, read on!

Installing Dependencies

To get fingerprinting working, you’ll need to install three things: the Chromaprint library or command-line tool, an
audio decoder, and the pyacoustid Python library (version 0.6 or later).

First, install pyacoustid itself. You can do this using pip, like so:

1.3. Plugins 49

http://acoustid.org/chromaprint
http://acoustid.org/
http://acoustid.org/chromaprint
http://github.com/beetbox/pyacoustid
http://www.pip-installer.org/

beets Documentation, Release 1.4.7

$ pip install pyacoustid

Then, you will need to install Chromaprint, either as a dynamic library or in the form of a command-line tool
(fpcalc).

Installing the Binary Command-Line Tool

The simplest way to get up and running, especially on Windows, is to download the appropriate Chromaprint binary
package and place the fpcalc (or fpcalc.exe) on your shell search path. On Windows, this means something
like C:\\Program Files. On OS X or Linux, put the executable somewhere like /usr/local/bin.

Installing the Library

On OS X and Linux, you can also use a library installed by your package manager, which has some advantages
(automatic upgrades, etc.). The Chromaprint site has links to packages for major Linux distributions. If you use
Homebrew on Mac OS X, you can install the library with brew install chromaprint.

You will also need a mechanism for decoding audio files supported by the audioread library:

• OS X has a number of decoders already built into Core Audio, so there’s no need to install anything.

• On Linux, you can install GStreamer with PyGObject, FFmpeg, or MAD with pymad. How you install
these will depend on your distribution. For example, on Ubuntu, run apt-get install gstreamer1.
0 python-gi. On Arch Linux, you want pacman -S gstreamer python2-gobject. If you use
GStreamer, be sure to install its codec plugins also (gst-plugins-good, etc.).

Note that if you install beets in a virtualenv, you’ll need it to have --system-site-packages enabled for
Python to see the GStreamer bindings.

• On Windows, builds are provided by GStreamer

To decode audio formats (MP3, FLAC, etc.) with GStreamer, you’ll need the standard set of Gstreamer plugins. For
example, on Ubuntu, install the packages gstreamer1.0-plugins-good, gstreamer1.0-plugins-bad,
and gstreamer1.0-plugins-ugly.

Usage

Once you have all the dependencies sorted out, enable the chroma plugin in your configuration (see Using Plugins)
to benefit from fingerprinting the next time you run beet import.

You can also use the beet fingerprint command to generate fingerprints for items already in your library.
(Provide a query to fingerprint a subset of your library.) The generated fingerprints will be stored in the library
database. If you have the import.write config option enabled, they will also be written to files’ metadata.

Configuration

There is one configuration option in the chroma: section, auto, which controls whether to fingerprint files during
the import process. To disable fingerprint-based autotagging, set it to no, like so:

chroma:
auto: no

50 Chapter 1. Contents

http://acoustid.org/chromaprint
http://acoustid.org/chromaprint
http://mxcl.github.com/homebrew/
https://github.com/beetbox/audioread
http://gstreamer.freedesktop.org/
https://wiki.gnome.org/Projects/PyGObject
http://ffmpeg.org/
http://spacepants.org/src/pymad/
http://www.underbit.com/products/mad/
http://gstreamer.freedesktop.org/

beets Documentation, Release 1.4.7

Submitting Fingerprints

You can help expand the Acoustid database by submitting fingerprints for the music in your collection. To do this, first
get an API key from the Acoustid service. Just use an OpenID or MusicBrainz account to log in and you’ll get a short
token string. Then, add the key to your config.yaml as the value apikey in a section called acoustid like so:

acoustid:
apikey: AbCd1234

Then, run beet submit. (You can also provide a query to submit a subset of your library.) The command will use
stored fingerprints if they’re available; otherwise it will fingerprint each file before submitting it.

Convert Plugin

The convert plugin lets you convert parts of your collection to a directory of your choice, transcoding audio and
embedding album art along the way. It can transcode to and from any format using a configurable command line.

Installation

To use the convert plugin, first enable it in your configuration (see Using Plugins). By default, the plugin depends
on FFmpeg to transcode the audio, so you might want to install it.

Usage

To convert a part of your collection, run beet convert QUERY. The command will transcode all the files matching
the query to the destination directory given by the -d (--dest) option or the dest configuration. The path layout
mirrors that of your library, but it may be customized through the paths configuration.

The plugin uses a command-line program to transcode the audio. With the -f (--format) option you can choose
the transcoding command and customize the available commands through the configuration.

Unless the -y (--yes) flag is set, the command will list all the items to be converted and ask for your confirmation.

The -a (or --album) option causes the command to match albums instead of tracks.

By default, the command places converted files into the destination directory and leaves your library pristine. To
instead back up your original files into the destination directory and keep converted files in your library, use the -k (or
--keep-new) option.

To test your configuration without taking any actions, use the --pretend flag. The plugin will print out the com-
mands it will run instead of executing them.

Configuration

To configure the plugin, make a convert: section in your configuration file. The available options are:

• auto: Import transcoded versions of your files automatically during imports. With this option enabled, the
importer will transcode all (in the default configuration) non-MP3 files over the maximum bitrate before adding
them to your library. Default: no.

• tmpdir: The directory where temporary files will be stored during import. Default: none (system default),

• copy_album_art: Copy album art when copying or transcoding albums matched using the -a option. Default:
no.

1.3. Plugins 51

http://acoustid.org/
http://acoustid.org/api-key
http://ffmpeg.org

beets Documentation, Release 1.4.7

• album_art_maxwidth: Downscale album art if it’s too big. The resize operation reduces image width to at
most maxwidth pixels while preserving the aspect ratio.

• dest: The directory where the files will be converted (or copied) to. Default: none.

• embed: Embed album art in converted items. Default: yes.

• max_bitrate: All lossy files with a higher bitrate will be transcoded and those with a lower bitrate will simply
be copied. Note that this does not guarantee that all converted files will have a lower bitrate—that depends on
the encoder and its configuration. Default: none.

• no_convert: Does not transcode items matching provided query string (see Queries). (i.e. format:AAC,
format:WMA or path::\.(m4a|wma)$)

• never_convert_lossy_files: Cross-conversions between lossy codecs—such as mp3, ogg vorbis, etc.—makes
little sense as they will decrease quality even further. If set to yes, lossy files are always copied. Default: no.

• paths: The directory structure and naming scheme for the converted files. Uses the same format as the top-level
paths section (see Path Format Configuration). Default: Reuse your top-level path format settings.

• quiet: Prevent the plugin from announcing every file it processes. Default: false.

• threads: The number of threads to use for parallel encoding. By default, the plugin will detect the number of
processors available and use them all.

You can also configure the format to use for transcoding (see the next section):

• format: The name of the format to transcode to when none is specified on the command line. Default: mp3.

• formats: A set of formats and associated command lines for transcoding each.

Configuring the transcoding command

You can customize the transcoding command through the formats map and select a command with the --format
command-line option or the format configuration.

convert:
format: speex
formats:

speex:
command: ffmpeg -i $source -y -acodec speex $dest
extension: spx

wav: ffmpeg -i $source -y -acodec pcm_s16le $dest

In this example beet convert will use the speex command by default. To convert the audio to wav, run beet
convert -f wav. This will also use the format key (wav) as the file extension.

Each entry in the formats map consists of a key (the name of the format) as well as the command and optionally
the file extension. extension is the filename extension to be used for newly transcoded files. If only the command
is given as a string or the extension is not provided, the file extension defaults to the format’s name. command is the
command to use to transcode audio. The tokens $source and $dest in the command are replaced with the paths to
the existing and new file.

The plugin in comes with default commands for the most common audio formats: mp3, alac, flac, aac, opus, ogg,
wmv. For details have a look at the output of beet config -d.

For a one-command-fits-all solution use the convert.command and convert.extension options. If these are
set, the formats are ignored and the given command is used for all conversions.

52 Chapter 1. Contents

beets Documentation, Release 1.4.7

convert:
command: ffmpeg -i $source -y -vn -aq 2 $dest
extension: mp3

Gapless MP3 encoding

While FFmpeg cannot produce “gapless” MP3s by itself, you can create them by using LAME directly. Use a shell
script like this to pipe the output of FFmpeg into the LAME tool:

#!/bin/sh
ffmpeg -i "$1" -f wav - | lame -V 2 --noreplaygain - "$2"

Then configure the convert plugin to use the script:

convert:
command: /path/to/script.sh $source $dest
extension: mp3

This strategy configures FFmpeg to produce a WAV file with an accurate length header for LAME to use. Using
--noreplaygain disables gain analysis; you can use the ReplayGain Plugin to do this analysis. See the LAME
documentation and the HydrogenAudio wiki for other LAME configuration options and a thorough discussion of MP3
encoding.

Discogs Plugin

The discogs plugin extends the autotagger’s search capabilities to include matches from the Discogs database.

Installation

To use the discogs plugin, first enable it in your configuration (see Using Plugins). Then, install the discogs-client
library by typing:

pip install discogs-client

You will also need to register for a Discogs account, and provide authentication credentials via a personal access token
or an OAuth2 authorization.

Matches from Discogs will now show up during import alongside matches from MusicBrainz.

If you have a Discogs ID for an album you want to tag, you can also enter it at the “enter Id” prompt in the importer.

OAuth Authorization

The first time you run the import command after enabling the plugin, it will ask you to authorize with Discogs by
visiting the site in a browser. Subsequent runs will not require re-authorization.

Authentication via Personal Access Token

As an alternative to OAuth, you can get a token from Discogs and add it to your configuration. To get a personal
access token (called a “user token” in the discogs-client documentation), login to Discogs, and visit the Developer

1.3. Plugins 53

http://wiki.hydrogenaud.io/index.php?title=Gapless_playback
http://lame.sourceforge.net/
http://lame.sourceforge.net/using.php
http://wiki.hydrogenaud.io/index.php?title=LAME
http://discogs.com
https://github.com/discogs/discogs_client
http://discogs.com
https://github.com/discogs/discogs_client
http://discogs.com
https://www.discogs.com/settings/developers
https://www.discogs.com/settings/developers

beets Documentation, Release 1.4.7

settings page. Press the Generate new token button, and place the generated token in your configuration, as the
user_token config option in the discogs section.

Troubleshooting

Several issues have been encountered with the Discogs API. If you have one, please start by searching for a similar
issue on the repo.

Here are two things you can try:

• Try deleting the token file (~/.config/beets/discogs_token.json by default) to force re-
authorization.

• Make sure that your system clock is accurate. The Discogs servers can reject your request if your clock is too
out of sync.

Duplicates Plugin

This plugin adds a new command, duplicates or dup, which finds and lists duplicate tracks or albums in your
collection.

Usage

To use the duplicates plugin, first enable it in your configuration (see Using Plugins).

By default, the beet duplicates command lists the names of tracks in your library that are duplicates. It assumes
that Musicbrainz track and album ids are unique to each track or album. That is, it lists every track or album with an
ID that has been seen before in the library. You can customize the output format, count the number of duplicate tracks
or albums, and list all tracks that have duplicates or just the duplicates themselves via command-line switches

-h, --help show this help message and exit
-f FMT, --format=FMT print with custom format
-a, --album show duplicate albums instead of tracks
-c, --count count duplicate tracks or albums
-C PROG, --checksum=PROG

report duplicates based on arbitrary command
-d, --delete delete items from library and disk
-F, --full show all versions of duplicate tracks or albums
-s, --strict report duplicates only if all attributes are set
-k, --key report duplicates based on keys (can be used multiple times)
-M, --merge merge duplicate items
-m DEST, --move=DEST move items to dest
-o DEST, --copy=DEST copy items to dest
-p, --path print paths for matched items or albums
-t TAG, --tag=TAG tag matched items with 'k=v' attribute

Configuration

To configure the plugin, make a duplicates: section in your configuration file. The available options mirror the
command-line options:

• album: List duplicate albums instead of tracks. Default: no.

54 Chapter 1. Contents

https://www.discogs.com/settings/developers
https://www.discogs.com/settings/developers
https://github.com/beetbox/beets/issues?utf8=%E2%9C%93&q=is%3Aissue+discogs
https://github.com/beetbox/beets/issues?utf8=%E2%9C%93&q=is%3Aissue+discogs

beets Documentation, Release 1.4.7

• checksum: Use an arbitrary command to compute a checksum of items. This overrides the keys option the
first time it is run; however, because it caches the resulting checksum as flexattrs in the database, you can
use --key=name_of_the_checksumming_program --key=any_other_keys (or set the keys
configuration option) the second time around. Default: ffmpeg -i {file} -f crc -.

• copy: A destination base directory into which to copy matched items. Default: none (disabled).

• count: Print a count of duplicate tracks or albums in the format $albumartist - $album - $title:
$count (for tracks) or $albumartist - $album: $count (for albums). Default: no.

• delete: Removes matched items from the library and from the disk. Default: no

• format: A specific format with which to print every track or album. This uses the same template syntax as
beets’ path formats. The usage is inspired by, and therefore similar to, the list command. Default: format_item

• full: List every track or album that has duplicates, not just the duplicates themselves. Default: no

• keys: Define in which track or album fields duplicates are to be searched. By default, the plugin uses the
musicbrainz track and album IDs for this purpose. Using the keys option (as a YAML list in the configuration
file, or as space-delimited strings in the command-line), you can extend this behavior to consider other attributes.
Default: [mb_trackid, mb_albumid]

• merge: Merge duplicate items by consolidating tracks and-or metadata where possible.

• move: A destination base directory into which it will move matched items. Default: none (disabled).

• path: Output the path instead of metadata when listing duplicates. Default: no.

• strict: Do not report duplicate matches if some of the attributes are not defined (ie. null or empty). Default: no

• tag: A key=value pair. The plugin will add a new key attribute with value value as a flexattr to the database
for duplicate items. Default: no.

• tiebreak: Dictionary of lists of attributes keyed by items or albums to use when choosing duplicates. By
default, the tie-breaking procedure favors the most complete metadata attribute set. If you would like to consider
the lower bitrates as duplicates, for example, set tiebreak: items: [bitrate]. Default: {}.

Examples

List all duplicate tracks in your collection:

beet duplicates

List all duplicate tracks from 2008:

beet duplicates year:2008

Print out a unicode histogram of duplicate track years using spark:

beet duplicates -f '$year' | spark

Print out a listing of all albums with duplicate tracks, and respective counts:

beet duplicates -ac

The same as the above but include the original album, and show the path:

beet duplicates -acf '$path'

1.3. Plugins 55

https://github.com/holman/spark

beets Documentation, Release 1.4.7

Get tracks with the same title, artist, and album:

beet duplicates -k title -k albumartist -k album

Compute Adler CRC32 or MD5 checksums, storing them as flexattrs, and report back duplicates based on those values:

beet dup -C 'ffmpeg -i {file} -f crc -'
beet dup -C 'md5sum {file}'

Copy highly danceable items to party directory:

beet dup --copy /tmp/party

Move likely duplicates to trash directory:

beet dup --move ${HOME}/.Trash

Delete items (careful!), if they’re Nickelback:

beet duplicates --delete -k albumartist -k albumartist:nickelback

Tag duplicate items with some flag:

beet duplicates --tag dup=1

Ignore items with undefined keys:

beet duplicates --strict

Merge and delete duplicate albums with different missing tracks:

beet duplicates --album --merge --delete

Edit Plugin

The edit plugin lets you modify music metadata using your favorite text editor.

Enable the edit plugin in your configuration (see Using Plugins) and then type:

beet edit QUERY

Your text editor (i.e., the command in your $EDITOR environment variable) will open with a list of tracks to edit.
Make your changes and exit your text editor to apply them to your music.

Command-Line Options

The edit command has these command-line options:

• -a or --album: Edit albums instead of individual items.

• -f FIELD or --field FIELD: Specify an additional field to edit (in addition to the defaults set in the
configuration).

• --all: Edit all available fields.

56 Chapter 1. Contents

beets Documentation, Release 1.4.7

Interactive Usage

The edit plugin can also be invoked during an import session. If enabled, it adds two new options to the user prompt:

[A]pply, More candidates, Skip, Use as-is, as Tracks, Group albums, Enter search,
→˓enter Id, aBort, eDit, edit Candidates?

• eDit: use this option for using the original items’ metadata as the starting point for your edits.

• edit Candidates: use this option for using a candidate’s metadata as the starting point for your edits.

Please note that currently the interactive usage of the plugin will only allow you to change the item-level fields. In
case you need to edit the album-level fields, the recommended approach is to invoke the plugin via the command line
in album mode (beet edit -a QUERY) after the import.

Also, please be aware that the edit Candidates choice can only be used with the matches found during the initial
search (and currently not supporting the candidates found via the Enter search or enter Id choices). You
might find the --search-id SEARCH_ID import option useful for those cases where you already have a specific
candidate ID that you want to edit.

Configuration

To configure the plugin, make an edit: section in your configuration file. The available options are:

• itemfields: A space-separated list of item fields to include in the editor by default. Default: track title
artist album

• albumfields: The same when editing albums (with the -a option). Default: album albumartist

EmbedArt Plugin

Typically, beets stores album art in a “file on the side”: along with each album, there is a file (named “cover.jpg” by
default) that stores the album art. You might want to embed the album art directly into each file’s metadata. While this
will take more space than the external-file approach, it is necessary for displaying album art in some media players
(iPods, for example).

Embedding Art Automatically

To automatically embed discovered album art into imported files, just enable the embedart plugin (see Plugins).
You’ll also want to enable the FetchArt Plugin to obtain the images to be embedded. Art will be embedded after each
album has its cover art set.

This behavior can be disabled with the auto config option (see below).

Image Similarity

When importing a lot of files with the auto option, one may be reluctant to overwrite existing embedded art for all of
them.

You can tell beets to avoid embedding images that are too different from the existing ones. This works by computing
the perceptual hashes (PHASH) of the two images and checking that the difference between the two does not exceed
a threshold. You can set the threshold with the compare_threshold option.

1.3. Plugins 57

http://www.fmwconcepts.com/misc_tests/perceptual_hash_test_results_510/

beets Documentation, Release 1.4.7

A threshold of 0 (the default) disables similarity checking and always embeds new images. Set the threshold to another
number—we recommend between 10 and 100—to adjust the sensitivity of the comparison. The smaller the threshold
number, the more similar the images must be.

This feature requires ImageMagick.

Configuration

To configure the plugin, make an embedart: section in your configuration file. The available options are:

• auto: Enable automatic album art embedding. Default: yes.

• compare_threshold: How similar candidate art must be to existing art to be written to the file (see Image
Similarity). Default: 0 (disabled).

• ifempty: Avoid embedding album art for files that already have art embedded. Default: no.

• maxwidth: A maximum width to downscale images before embedding them (the original image file is not
altered). The resize operation reduces image width to at most maxwidth pixels. The height is recomputed so
that the aspect ratio is preserved. See also Image Resizing for further caveats about image resizing. Default: 0
(disabled).

• remove_art_file: Automatically remove the album art file for the album after it has been embedded. This option
is best used alongside the FetchArt plugin to download art with the purpose of directly embedding it into the
file’s metadata without an “intermediate” album art file. Default: no.

Note: compare_threshold option requires ImageMagick, and maxwidth requires either ImageMagick or Pil-
low.

Manually Embedding and Extracting Art

The embedart plugin provides a couple of commands for manually managing embedded album art:

• beet embedart [-f IMAGE] QUERY: embed images into the every track on the albums matching the
query. If the -f (--file) option is given, then use a specific image file from the filesystem; otherwise, each
album embeds its own currently associated album art. The command prompts for confirmation before making
the change unless you specify the -y (--yes) option.

• beet extractart [-a] [-n FILE] QUERY: extracts the images for all albums matching the query.
The images are placed inside the album folder. You can specify the destination file name using the -n option,
but leave off the extension: it will be chosen automatically. The destination filename is specified using the
art_filename configuration option. It defaults to cover if it’s not specified via -o nor the config. Using
-a, the extracted image files are automatically associated with the corresponding album.

• beet extractart -o FILE QUERY: extracts the image from an item matching the query and stores it in
a file. You have to specify the destination file using the -o option, but leave off the extension: it will be chosen
automatically.

• beet clearart QUERY: removes all embedded images from all items matching the query. The command
prompts for confirmation before making the change unless you specify the -y (--yes) option.

EmbyUpdate Plugin

embyupdate is a plugin that lets you automatically update Emby’s library whenever you change your beets library.

58 Chapter 1. Contents

http://www.imagemagick.org/
http://www.imagemagick.org/
http://www.imagemagick.org/
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
http://emby.media/

beets Documentation, Release 1.4.7

To use embyupdate plugin, enable it in your configuration (see Using Plugins). Then, you’ll want to configure the
specifics of your Emby server. You can do that using an emby: section in your config.yaml, which looks like
this:

emby:
host: localhost
port: 8096
username: user
apikey: apikey

To use the embyupdate plugin you need to install the requests library with:

pip install requests

With that all in place, you’ll see beets send the “update” command to your Emby server every time you change your
beets library.

Configuration

The available options under the emby: section are:

• host: The Emby server host. You also can include http:// or https://. Default: localhost

• port: The Emby server port. Default: 8096

• username: A username of a Emby user that is allowed to refresh the library.

• apikey: An Emby API key for the user.

• password: The password for the user. (This is only necessary if no API key is provided.)

You can choose to authenticate either with apikey or password, but only one of those two is required.

Export Plugin

The export plugin lets you get data from the items and export the content as JSON.

Enable the export plugin (see Using Plugins for help). Then, type beet export followed by a query to get the
data from your library. For example, run this:

$ beet export beatles

to print a JSON file containing information about your Beatles tracks.

Command-Line Options

The export command has these command-line options:

• --include-keys or -i: Choose the properties to include in the output data. The argument is a comma-
separated list of simple glob patterns where * matches any string. For example:

$ beet export -i 'title,mb*' beatles

will include the title property and all properties starting with mb. You can add the -i option multiple times
to the command line.

• --library or -l: Show data from the library database instead of the files’ tags.

1.3. Plugins 59

http://docs.python-requests.org/en/latest/
http://www.json.org

beets Documentation, Release 1.4.7

• --output or -o: Path for an output file. If not informed, will print the data in the console.

• --append: Appends the data to the file instead of writing.

Configuration

To configure the plugin, make a export: section in your configuration file. Under the json key, these options are
available:

• ensure_ascii: Escape non-ASCII characters with uXXXX entities.

• indent: The number of spaces for indentation.

• separators: A [item_separator, dict_separator] tuple.

• sort_keys: Sorts the keys in JSON dictionaries.

These options match the options from the Python json module.

The default options look like this:

export:
json:

formatting:
ensure_ascii: False
indent: 4
separators: [',' , ': ']
sort_keys: true

FetchArt Plugin

The fetchart plugin retrieves album art images from various sources on the Web and stores them as image files.

To use the fetchart plugin, first enable it in your configuration (see Using Plugins). Then, install the requests
library by typing:

pip install requests

The plugin uses requests to fetch album art from the Web.

Fetching Album Art During Import

When the plugin is enabled, it automatically gets album art for every album you import.

By default, beets stores album art image files alongside the music files for an album in a file called cover.jpg. To
customize the name of this file, use the art_filename config option.

Configuration

To configure the plugin, make a fetchart: section in your configuration file. The available options are:

• auto: Enable automatic album art fetching during import. Default: yes.

• cautious: Pick only trusted album art by ignoring filenames that do not contain one of the keywords in
cover_names. Default: no.

60 Chapter 1. Contents

https://docs.python.org/2/library/json.html#basic-usage
http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/

beets Documentation, Release 1.4.7

• cover_names: Prioritize images containing words in this list. Default: cover front art album
folder.

• minwidth: Only images with a width bigger or equal to minwidth are considered as valid album art candi-
dates. Default: 0.

• maxwidth: A maximum image width to downscale fetched images if they are too big. The resize operation
reduces image width to at most maxwidth pixels. The height is recomputed so that the aspect ratio is preserved.

• enforce_ratio: Only images with a width:height ratio of 1:1 are considered as valid album art candidates if set
to yes. It is also possible to specify a certain deviation to the exact ratio to still be considered valid. This can be
done either in pixels (enforce_ratio: 10px) or as a percentage of the longer edge (enforce_ratio:
0.5%). Default: no.

• sources: List of sources to search for images. An asterisk * expands to all available sources. De-
fault: filesystem coverart amazon albumart, i.e., everything but wikipedia, google and
fanarttv. Enable those sources for more matches at the cost of some speed. They are searched in the
given order, thus in the default config, no remote (Web) art source are queried if local art is found in the filesys-
tem. To use a local image as fallback, move it to the end of the list. For even more fine-grained control over the
search order, see the section on Album Art Sources below.

• google_key: Your Google API key (to enable the Google Custom Search backend). Default: None.

• google_engine: The custom search engine to use. Default: The beets custom search engine, which searches the
entire web.

• fanarttv_key: The personal API key for requesting art from fanart.tv. See below.

• store_source: If enabled, fetchart stores the artwork’s source in a flexible tag named art_source. See below
for the rationale behind this. Default: no.

Note: maxwidth and enforce_ratio options require either ImageMagick or Pillow.

Note: Previously, there was a remote_priority option to specify when to look for art on the filesystem. This is still
respected, but a deprecation message will be shown until you replace this configuration with the new filesystem value
in the sources array.

Here’s an example that makes plugin select only images that contain front or back keywords in their filenames and
prioritizes the Amazon source over others:

fetchart:
cautious: true
cover_names: front back
sources: amazon *

Manually Fetching Album Art

Use the fetchart command to download album art after albums have already been imported:

$ beet fetchart [-f] [query]

By default, the command will only look for album art when the album doesn’t already have it; the -f or --force
switch makes it search for art in Web databases regardless. If you specify a query, only matching albums will be
processed; otherwise, the command processes every album in your library.

1.3. Plugins 61

https://cse.google.com.au:443/cse/publicurl?cx=001442825323518660753:hrh5ch1gjzm
http://www.imagemagick.org/
https://github.com/python-pillow/Pillow

beets Documentation, Release 1.4.7

Display Only Missing Album Art

Use the fetchart command with the -q switch in order to display only missing art:

$ beet fetchart [-q] [query]

By default the command will display all results, the -q or --quiet switch will only display results for album arts
that are still missing.

Image Resizing

Beets can resize images using Pillow, ImageMagick, or a server-side resizing proxy. If either Pillow or ImageMagick
is installed, beets will use those; otherwise, it falls back to the resizing proxy. If the resizing proxy is used, no resizing
is performed for album art found on the filesystem—only downloaded art is resized. Server-side resizing can also be
slower than local resizing, so consider installing one of the two backends for better performance.

When using ImageMagick, beets looks for the convert executable in your path. On some versions of Windows, the
program can be shadowed by a system-provided convert.exe. On these systems, you may need to modify your
%PATH% environment variable so that ImageMagick comes first or use Pillow instead.

Album Art Sources

By default, this plugin searches for art in the local filesystem as well as on the Cover Art Archive, Amazon, and
AlbumArt.org, in that order. You can reorder the sources or remove some to speed up the process using the sources
configuration option.

When looking for local album art, beets checks for image files located in the same folder as the music files you’re
importing. Beets prefers to use an image file whose name contains “cover”, “front”, “art”, “album” or “folder”, but in
the absence of well-known names, it will use any image file in the same folder as your music files.

For some of the art sources, the backend service can match artwork by various criteria. If you want finer control over
the search order in such cases, you can use this alternative syntax for the sources option:

fetchart:
sources:

- filesystem
- coverart: release
- itunes
- coverart: releasegroup
- '*'

where listing a source without matching criteria will default to trying all available strategies. Entries of the forms
coverart: release releasegroup and coverart: * are also valid. Currently, only the coverart
source supports multiple criteria: namely, release and releasegroup, which refer to the respective MusicBrainz
IDs.

When you choose to apply changes during an import, beets will search for art as described above. For “as-is” imports
(and non-autotagged imports using the -A flag), beets only looks for art on the local filesystem.

Google custom search

To use the google image search backend you need to register for a Google API key. Set the google_key configura-
tion option to your key, then add google to the list of sources in your configuration.

62 Chapter 1. Contents

https://github.com/python-pillow/Pillow
http://www.imagemagick.org/
https://console.developers.google.com.

beets Documentation, Release 1.4.7

Optionally, you can define a custom search engine. Get your search engine’s token and use it for your
google_engine configuration option. The default engine searches the entire web for cover art.

Note that the Google custom search API is limited to 100 queries per day. After that, the fetchart plugin will fall back
on other declared data sources.

Fanart.tv

Although not strictly necessary right now, you might think about registering a personal fanart.tv API key. Set the
fanarttv_key configuration option to your key, then add fanarttv to the list of sources in your configuration.

More detailed information can be found on their blog. Specifically, the personal key will give you earlier access to
new art.

Storing the Artwork’s Source

Storing the current artwork’s source might be used to narrow down fetchart commands. For example, if some
albums have artwork placed manually in their directories that should not be replaced by a forced album art fetch, you
could do

beet fetchart -f ^art_source:filesystem

The values written to art_source are the same names used in the sources configuration value.

Embedding Album Art

This plugin fetches album art but does not embed images into files’ tags. To do that, use the EmbedArt Plugin. (You’ll
want to have both plugins enabled.)

FileFilter Plugin

The filefilter plugin allows you to skip files during import using regular expressions.

To use the filefilter plugin, enable it in your configuration (see Using Plugins).

Configuration

To configure the plugin, make a filefilter: section in your configuration file. The available options are:

• path: A regular expression to filter files based on their path and name. Default: .* (import everything)

• album_path and singleton_path: You may specify different regular expressions used for imports of albums and
singletons. This way, you can automatically skip singletons when importing albums if the names (and paths) of
the files are distinguishable via a regex. The regexes defined here take precedence over the global path option.

Here’s an example:

filefilter:
path: .*\d\d[^/]+$

will only import files which names start with two digits
album_path: .*\d\d[^/]+$
singleton_path: .*/(?!\d\d)[^/]+$

1.3. Plugins 63

http://www.google.com/cse/all
https://fanart.tv/get-an-api-key/
https://fanart.tv/2015/01/personal-api-keys/

beets Documentation, Release 1.4.7

Freedesktop Plugin

The freedesktop plugin created .directory files in your album folders. This plugin is now deprecated and replaced
by the Thumbnails Plugin with the dolphin option enabled.

FromFilename Plugin

The fromfilename plugin helps to tag albums that are missing tags altogether but where the filenames contain
useful information like the artist and title.

When you attempt to import a track that’s missing a title, this plugin will look at the track’s filename and guess its
track number, title, and artist. These will be used to search in MusicBrainz and match track ordering.

To use the fromfilename plugin, enable it in your configuration (see Using Plugins).

FtInTitle Plugin

The ftintitle plugin automatically moves “featured” artists from the artist field to the title field.

According to MusicBrainz style, featured artists are part of the artist field. That means that, if you tag your music
using MusicBrainz, you’ll have tracks in your library like “Tellin’ Me Things” by the artist “Blakroc feat. RZA”. If
you prefer to tag this as “Tellin’ Me Things feat. RZA” by “Blakroc”, then this plugin is for you.

To use the ftintitle plugin, enable it in your configuration (see Using Plugins).

Configuration

To configure the plugin, make a ftintitle: section in your configuration file. The available options are:

• auto: Enable metadata rewriting during import. Default: yes.

• drop: Remove featured artists entirely instead of adding them to the title field. Default: no.

• format: Defines the format for the featuring X part of the new title field. In this format the {0} is used to define
where the featured artists are placed. Default: feat. {0}

Running Manually

From the command line, type:

$ beet ftintitle [QUERY]

The query is optional; if it’s left off, the transformation will be applied to your entire collection.

Use the -d flag to remove featured artists (equivalent of the drop config option).

Fuzzy Search Plugin

The fuzzy plugin provides a prefixed query that searches your library using fuzzy pattern matching. This can be
useful if you want to find a track with complicated characters in the title.

First, enable the plugin named fuzzy (see Using Plugins). You’ll then be able to use the ~ prefix to use fuzzy
matching:

64 Chapter 1. Contents

http://musicbrainz.org/doc/Style

beets Documentation, Release 1.4.7

$ beet ls '~Vareoldur'
Sigur Rós - Valtari - Varðeldur

Configuration

To configure the plugin, make a fuzzy: section in your configuration file. The available options are:

• threshold: The “sensitivity” of the fuzzy match. A value of 1.0 will show only perfect matches and a value of
0.0 will match everything. Default: 0.7.

• prefix: The character used to designate fuzzy queries. Default: ~, which may need to be escaped in some shells.

Gmusic Plugin

The gmusic plugin lets you upload songs to Google Play Music and query songs in your library.

Installation

The plugin requires gmusicapi. You can install it using pip:

pip install gmusicapi

Then, you can enable the gmusic plugin in your configuration (see Using Plugins).

Usage

To upload tracks to Google Play Music, use the gmusic-upload command:

beet gmusic-upload [QUERY]

If you don’t include a query, the plugin will upload your entire collection.

To query the songs in your collection, you will need to add your Google credentials to your beets configuration file.
Put your Google username and password under a section called gmusic, like so:

gmusic:
email: user@example.com
password: seekrit

If you have enabled two-factor authentication in your Google account, you will need to set up and use an application-
specific password. You can obtain one from your Google security settings page.

Then, use the gmusic-songs command to list music:

beet gmusic-songs [-at] [ARGS]

Use the -a option to search by artist and -t to search by track. For example:

beet gmusic-songs -a John Frusciante
beet gmusic-songs -t Black Hole Sun

For a list of all songs in your library, run beet gmusic-songs without any arguments.

1.3. Plugins 65

https://github.com/simon-weber/gmusicapi/

beets Documentation, Release 1.4.7

Hook Plugin

Internally, beets uses events to tell plugins when something happens. For example, one event fires when the importer
finishes processes a song, and another triggers just before the beet command exits. The hook plugin lets you run
commands in response to these events.

Configuration

To configure the plugin, make a hook section in your configuration file. The available options are:

• hooks: A list of events and the commands to run (see Configuring Each Hook). Default: Empty.

Configuring Each Hook

Each element under hooks should have these keys:

• event: The name of the event that will trigger this hook. See the plugin events documentation for a list of
possible values.

• command: The command to run when this hook executes.

Command Substitution

Commands can access the parameters of events using Python string formatting. Use {name} in your command and
the plugin will substitute it with the named value. The name can also refer to a field, as in {album.path}.

You can find a list of all available events and their arguments in the plugin events documentation.

Example Configuration

hook:
hooks:
Output on exit:
beets just exited!
have a nice day!
- event: cli_exit

command: echo "beets just exited!"
- event: cli_exit

command: echo "have a nice day!"

Output on item import:
importing "<file_name_here>"
Where <file_name_here> is the item being imported
- event: item_imported

command: echo "importing \"{item.path}\""

Output on write:
writing to "<file_name_here>"
Where <file_name_here> is the file being written to
- event: write

command: echo "writing to {path}"

66 Chapter 1. Contents

https://www.python.org/dev/peps/pep-3101/

beets Documentation, Release 1.4.7

IHate Plugin

The ihate plugin allows you to automatically skip things you hate during import or warn you about them. You
specify queries (see Queries) and the plugin skips (or warns about) albums or items that match any query.

To use the ihate plugin, enable it in your configuration (see Using Plugins).

Configuration

To configure the plugin, make an ihate: section in your configuration file. The available options are:

• skip: Never import items and albums that match a query in this list. Default: [] (empty list).

• warn: Print a warning message for matches in this list of queries. Default: [].

Here’s an example:

ihate:
warn:

- artist:rnb
- genre:soul
Only warn about tribute albums in rock genre.
- genre:rock album:tribute

skip:
- genre::russian\srock
- genre:polka
- artist:manowar
- album:christmas

The plugin trusts your decision in “as-is” imports.

ImportAdded Plugin

The importadded plugin is useful when an existing collection is imported and the time when albums and items
were added should be preserved.

To use the importadded plugin, enable it in your configuration (see Using Plugins).

Usage

The MTIME (modification time) of files that are imported into the library are assumed to represent the time when the
items were originally added.

The item.added field is populated as follows:

• For singleton items with no album, item.added is set to the item’s file mtime before it was imported.

• For items that are part of an album, album.added and item.added are set to the oldest mtime of the files
in the album before they were imported. The mtime of album directories is ignored.

This plugin can optionally be configured to also preserve mtimes at import using the preserve_mtimes option.

When preserve_write_mtimes option is set, this plugin preserves mtimes after each write to files using the
item.added attribute.

File modification times are preserved as follows:

• For all items:

1.3. Plugins 67

beets Documentation, Release 1.4.7

– item.mtime is set to the mtime of the file from which the item is imported from.

– The mtime of the file item.path is set to item.mtime.

Note that there is no album.mtime field in the database and that the mtime of album directories on disk aren’t
preserved.

Configuration

To configure the plugin, make an importadded: section in your configuration file. There are two options available:

• preserve_mtimes: After importing files, re-set their mtimes to their original value. Default: no.

• preserve_write_mtimes: After writing files, re-set their mtimes to their original value. Default: no.

Reimport

This plugin will skip reimported singleton items and reimported albums and all of their items.

ImportFeeds Plugin

This plugin helps you keep track of newly imported music in your library.

To use the importfeeds plugin, enable it in your configuration (see Using Plugins).

Configuration

To configure the plugin, make an importfeeds: section in your configuration file. The available options are:

• absolute_path: Use absolute paths instead of relative paths. Some applications may need this to work properly.
Default: no.

• dir: The output directory. Default: Your beets library directory.

• formats: Select the kind of output. Use one or more of:

– m3u: Catalog the imports in a centralized playlist.

– m3u_multi: Create a new playlist for each import (uniquely named by appending the date and track/album
name).

– link: Create a symlink for each imported item. This is the recommended setting to propagate beets imports
to your iTunes library: just drag and drop the dir folder on the iTunes dock icon.

– echo: Do not write a playlist file at all, but echo a list of new file paths to the terminal.

Default: None.

• m3u_name: Playlist name used by the m3u format. Default: imported.m3u.

• relative_to: Make the m3u paths relative to another folder than where the playlist is being written. If you’re
using importfeeds to generate a playlist for MPD, you should set this to the root of your music library. Default:
None.

Here’s an example configuration for this plugin:

68 Chapter 1. Contents

beets Documentation, Release 1.4.7

importfeeds:
formats: m3u link
dir: ~/imports/
relative_to: ~/Music/
m3u_name: newfiles.m3u

Info Plugin

The info plugin provides a command that dumps the current tag values for any file format supported by beets. It
works like a supercharged version of mp3info or id3v2.

Enable the info plugin in your configuration (see Using Plugins) and then type:

$ beet info /path/to/music.flac

and the plugin will enumerate all the tags in the specified file. It also accepts multiple filenames in a single command-
line.

You can also enter a query to inspect music from your library:

$ beet info beatles

If you just want to see specific properties you can use the --include-keys option to filter them. The argument is
a comma-separated list of simple glob patterns where * matches any string. For example:

$ beet info -i 'title,mb*' beatles

Will only show the title property and all properties starting with mb. You can add the -i option multiple times to
the command line.

Additional command-line options include:

• --library or -l: Show data from the library database instead of the files’ tags.

• --summarize or -s: Merge all the information from multiple files into a single list of values. If the tags
differ across the files, print [various].

• --format or -f: Specify a specific format with which to print every item. This uses the same template syntax
as beets’ path formats.

• --keys-only or -k: Show the name of the tags without the values.

Inline Plugin

The inline plugin lets you use Python to customize your path formats. Using it, you can define template fields in
your beets configuration file and refer to them from your template strings in the paths: section (see Configuration).

To use the inline plugin, enable it in your configuration (see Using Plugins). Then, make a item_fields: block
in your config file. Under this key, every line defines a new template field; the key is the name of the field (you’ll use
the name to refer to the field in your templates) and the value is a Python expression or function body. The Python
code has all of a track’s fields in scope, so you can refer to any normal attributes (such as artist or title) as
Python variables.

Here are a couple of examples of expressions:

1.3. Plugins 69

http://www.ibiblio.org/mp3info/
http://id3v2.sourceforge.net

beets Documentation, Release 1.4.7

item_fields:
initial: albumartist[0].upper() + u'.'
disc_and_track: u'%02i.%02i' % (disc, track) if

disctotal > 1 else u'%02i' % (track)

Note that YAML syntax allows newlines in values if the subsequent lines are indented.

These examples define $initial and $disc_and_track fields that can be referenced in path templates like so:

paths:
default: $initial/$artist/$album%aunique{}/$disc_and_track $title

Block Definitions

If you need to use statements like import, you can write a Python function body instead of a single expression. In
this case, you’ll need to return a result for the value of the path field, like so:

item_fields:
filename: |

import os
from beets.util import bytestring_path
return bytestring_path(os.path.basename(path))

You might want to use the YAML syntax for “block literals,” in which a leading | character indicates a multi-line
block of text.

Album Fields

The above examples define fields for item templates, but you can also define fields for album templates. Use the
album_fields configuration section. In this context, all existing album fields are available as variables along with
items, which is a list of items in the album.

This example defines a $bitrate field for albums as the average of the tracks’ fields:

album_fields:
bitrate: |

total = 0
for item in items:

total += item.bitrate
return total / len(items)

IPFS Plugin

The ipfs plugin makes it easy to share your library and music with friends. The plugin uses ipfs for storing the
library and file content.

Installation

This plugin requires go-ipfs to be running as a daemon and that the associated ipfs command is on the user’s $PATH.

Once you have the client installed, enable the ipfs plugin in your configuration (see Using Plugins).

70 Chapter 1. Contents

http://ipfs.io/
https://github.com/ipfs/go-ipfs

beets Documentation, Release 1.4.7

Usage

This plugin can store and retrieve music individually, or it can share entire library databases.

Adding

To add albums to ipfs, making them shareable, use the -a or --add flag. If used without arguments it will add all
albums in the local library. When added, all items and albums will get an “ipfs” field in the database containing the
hash of that specific file/folder. Newly imported albums will be added automatically to ipfs by default (see below).

Retrieving

You can give the ipfs hash for some music to a friend. They can get that album from ipfs, and import it into beets,
using the -g or --get flag. If the argument passed to the -g flag isn’t an ipfs hash, it will be used as a query instead,
getting all albums matching the query.

Sharing Libraries

Using the -p or --publish flag, a copy of the local library will be published to ipfs. Only albums/items with ipfs
records in the database will published, and local paths will be stripped from the library. A hash of the library will be
returned to the user.

A friend can then import this remote library by using the -i or --import flag. To tag an imported library with a
specific name by passing a name as the second argument to -i, after the hash. The content of all remote libraries will
be combined into an additional library as long as the content doesn’t already exist in the joined library.

When remote libraries has been imported you can search them by using the -l or --list flag. The hash of albums
matching the query will be returned, and this can then be used with -g to fetch and import the album to the local
library.

Ipfs can be mounted as a FUSE file system. This means that music in a remote library can be streamed directly, without
importing them to the local library first. If the /ipfs folder is mounted then matching queries will be sent to the Play
Plugin using the -m or --play flag.

Configuration

The ipfs plugin will automatically add imported albums to ipfs and add those hashes to the database. This can be
turned off by setting the auto option in the ipfs: section of the config to no.

Key Finder Plugin

The keyfinder plugin uses the KeyFinder program to detect the musical key of track from its audio data and store
it in the initial_key field of your database. It does so automatically when importing music or through the beet
keyfinder [QUERY] command.

To use the keyfinder plugin, enable it in your configuration (see Using Plugins).

1.3. Plugins 71

http://www.ibrahimshaath.co.uk/keyfinder/

beets Documentation, Release 1.4.7

Configuration

To configure the plugin, make a keyfinder: section in your configuration file. The available options are:

• auto: Analyze every file on import. Otherwise, you need to use the beet keyfinder command explicitly.
Default: yes

• bin: The name of the KeyFinder program on your system or a path to the binary. If you installed the KeyFinder
GUI on a Mac, for example, you want something like /Applications/KeyFinder.app/Contents/
MacOS/KeyFinder. Default: KeyFinder (i.e., search for the program in your $PATH)..

• overwrite: Calculate a key even for files that already have an initial_key value. Default: no.

KodiUpdate Plugin

The kodiupdate plugin lets you automatically update Kodi’s music library whenever you change your beets library.

To use kodiupdate plugin, enable it in your configuration (see Using Plugins). Then, you’ll want to configure the
specifics of your Kodi host. You can do that using a kodi: section in your config.yaml, which looks like this:

kodi:
host: localhost
port: 8080
user: kodi
pwd: kodi

To use the kodiupdate plugin you need to install the requests library with:

pip install requests

You’ll also need to enable JSON-RPC in Kodi in order the use the plugin. In Kodi’s interface, navigate to Sys-
tem/Settings/Network/Services and choose “Allow control of Kodi via HTTP.”

With that all in place, you’ll see beets send the “update” command to your Kodi host every time you change your beets
library.

Configuration

The available options under the kodi: section are:

• host: The Kodi host name. Default: localhost

• port: The Kodi host port. Default: 8080

• user: The Kodi host user. Default: kodi

• pwd: The Kodi host password. Default: kodi

LastGenre Plugin

The MusicBrainz database does not contain genre information. Therefore, when importing and autotagging music,
beets does not assign a genre. The lastgenre plugin fetches tags from Last.fm and assigns them as genres to your
albums and items.

72 Chapter 1. Contents

http://www.ibrahimshaath.co.uk/keyfinder/
http://kodi.tv/
http://docs.python-requests.org/en/latest/
http://musicbrainz.org/doc/General_FAQ#Why_does_MusicBrainz_not_support_genre_information.3F
http://last.fm/

beets Documentation, Release 1.4.7

Installation

The plugin requires pylast, which you can install using pip by typing:

pip install pylast

After you have pylast installed, enable the lastgenre plugin in your configuration (see Using Plugins).

Usage

The plugin chooses genres based on a whitelist, meaning that only certain tags can be considered genres. This way,
tags like “my favorite music” or “seen live” won’t be considered genres. The plugin ships with a fairly extensive
internal whitelist, but you can set your own in the config file using the whitelist configuration value or forgo a
whitelist altogether by setting the option to false.

The genre list file should contain one genre per line. Blank lines are ignored. For the curious, the default genre list is
generated by a script that scrapes Wikipedia.

Canonicalization

The plugin can also canonicalize genres, meaning that more obscure genres can be turned into coarser-grained ones
that are present in the whitelist. This works using a tree of nested genre names, represented using YAML, where the
leaves of the tree represent the most specific genres.

The most common way to use this would be with a custom whitelist containing only a desired subset of genres.
Consider for a example this minimal whitelist:

rock
heavy metal
pop

together with the default genre tree. Then an item that has its genre specified as viking metal would actually be tagged
as heavy metal because neither viking metal nor its parent black metal are in the whitelist. It always tries to use the
most specific genre that’s available in the whitelist.

The relevant subtree path in the default tree looks like this:

- rock:
- heavy metal:

- black metal:
- viking metal

Considering that, it’s not very useful to use the default whitelist (which contains about any genre contained in the tree)
with canonicalization because nothing would ever be matched to a more generic node since all the specific subgenres
are in the whitelist to begin with.

Genre Source

When looking up genres for albums or individual tracks, you can choose whether to use Last.fm tags on the album,
the artist, or the track. For example, you might want all the albums for a certain artist to carry the same genre. The
default is “album”. When set to “track”, the plugin will fetch both album-level and track-level genres for your music
when importing albums.

1.3. Plugins 73

https://github.com/pylast/pylast
http://www.pip-installer.org/
https://raw.githubusercontent.com/beetbox/beets/master/beetsplug/lastgenre/genres.txt
https://gist.github.com/1241307
https://raw.githubusercontent.com/beetbox/beets/master/beetsplug/lastgenre/genres-tree.yaml
http://www.yaml.org/

beets Documentation, Release 1.4.7

Multiple Genres

By default, the plugin chooses the most popular tag on Last.fm as a genre. If you prefer to use a list of popular genre
tags, you can increase the number of the count config option.

Lists of up to count genres will then be used instead of single genres. The genres are separated by commas by default,
but you can change this with the separator config option.

Last.fm provides a popularity factor, a.k.a. weight, for each tag ranging from 100 for the most popular tag down to 0
for the least popular. The plugin uses this weight to discard unpopular tags. The default is to ignore tags with a weight
less then 10. You can change this by setting the min_weight config option.

Specific vs. Popular Genres

By default, the plugin sorts genres by popularity. However, you can use the prefer_specific option to override
this behavior and instead sort genres by specificity, as determined by your whitelist and canonicalization tree.

For instance, say you have both folk and americana in your whitelist and canonicalization tree and americana
is a leaf within folk. If Last.fm returns both of those tags, lastgenre is going to use the most popular, which is often
the most generic (in this case folk). By setting prefer_specific to true, lastgenre would use americana
instead.

Configuration

To configure the plugin, make a lastgenre: section in your configuration file. The available options are:

• auto: Fetch genres automatically during import. Default: yes.

• canonical: Use a canonicalization tree. Setting this to yes will use a built-in tree. You can also set it to a path,
like the whitelist config value, to use your own tree. Default: no (disabled).

• count: Number of genres to fetch. Default: 1

• fallback: A string if to use a fallback genre when no genre is found. You can use the empty string '' to reset
the genre. Default: None.

• force: By default, beets will always fetch new genres, even if the files already have one. To instead leave genres
in place in when they pass the whitelist, set the force option to no. Default: yes.

• min_weight: Minimum popularity factor below which genres are discarded. Default: 10.

• prefer_specific: Sort genres by the most to least specific, rather than most to least popular. Default: no.

• source: Which entity to look up in Last.fm. Can be either artist, album or track. Default: album.

• separator: A separator for multiple genres. Default: ', '.

• whitelist: The filename of a custom genre list, yes to use the internal whitelist, or no to consider all genres
valid. Default: yes.

Running Manually

In addition to running automatically on import, the plugin can also be run manually from the command line. Use the
command beet lastgenre [QUERY] to fetch genres for albums matching a certain query.

To disable automatic genre fetching on import, set the auto config option to false.

74 Chapter 1. Contents

http://last.fm/

beets Documentation, Release 1.4.7

LastImport Plugin

The lastimport plugin downloads play-count data from your Last.fm library into beets’ database. You can later
create smart playlists by querying play_count and do other fun stuff with this field.

Installation

The plugin requires pylast, which you can install using pip by typing:

pip install pylast

After you have pylast installed, enable the lastimport plugin in your configuration (see Using Plugins).

Next, add your Last.fm username to your beets configuration file:

lastfm:
user: beetsfanatic

Importing Play Counts

Simply run beet lastimport and wait for the plugin to request tracks from Last.fm and match them to your beets
library. (You will be notified of tracks in your Last.fm profile that do not match any songs in your library.)

Then, your matched tracks will be populated with the play_count field, which you can use in any query or template.
For example:

$ beet ls -f '$title: $play_count' play_count:5..
Eple (Melody A.M.): 60

To see more information (namely, the specific play counts for matched tracks), use the -v option.

Configuration

Aside from the required lastfm.user field, this plugin has some specific options under the lastimport: sec-
tion:

• per_page: The number of tracks to request from the API at once. Default: 500.

• retry_limit: How many times should we re-send requests to Last.fm on failure? Default: 3.

By default, the plugin will use beets’s own Last.fm API key. You can also override it with your own API key:

lastfm:
api_key: your_api_key

Lyrics Plugin

The lyrics plugin fetches and stores song lyrics from databases on the Web. Namely, the current version of the
plugin uses Lyric Wiki, Musixmatch, Genius.com, and, optionally, the Google custom search API.

1.3. Plugins 75

http://last.fm
https://github.com/pylast/pylast
http://www.pip-installer.org/
http://lyrics.wikia.com/
https://www.musixmatch.com/
http://genius.com/

beets Documentation, Release 1.4.7

Fetch Lyrics During Import

To automatically fetch lyrics for songs you import, enable the lyrics plugin in your configuration (see Using Plug-
ins). Then, install the requests library by typing:

pip install requests

The plugin uses requests to download lyrics.

When importing new files, beets will now fetch lyrics for files that don’t already have them. The lyrics will be stored
in the beets database. If the import.write config option is on, then the lyrics will also be written to the files’ tags.

Configuration

To configure the plugin, make a lyrics: section in your configuration file. The available options are:

• auto: Fetch lyrics automatically during import. Default: yes.

• bing_client_secret: Your Bing Translation application password (to Activate On-the-Fly Translation)

• bing_lang_from: By default all lyrics with a language other than bing_lang_to are translated. Use a list of
lang codes to restrict the set of source languages to translate. Default: []

• bing_lang_to: Language to translate lyrics into. Default: None.

• fallback: By default, the file will be left unchanged when no lyrics are found. Use the empty string '' to reset
the lyrics in such a case. Default: None.

• force: By default, beets won’t fetch lyrics if the files already have ones. To instead always fetch lyrics, set the
force option to yes. Default: no.

• google_API_key: Your Google API key (to enable the Google Custom Search backend). Default: None.

• google_engine_ID: The custom search engine to use. Default: The beets custom search engine, which gathers
an updated list of sources known to be scrapeable.

• sources: List of sources to search for lyrics. An asterisk * expands to all available sources. Default: google
lyricwiki musixmatch genius, i.e., all the available sources. The google source will be automatically
deactivated if no google_API_key is setup. Both it and the genius source will only be enabled if Beautiful-
Soup is installed.

Here’s an example of config.yaml:

lyrics:
fallback: ''
google_API_key: AZERTYUIOPQSDFGHJKLMWXCVBN1234567890_ab
google_engine_ID: 009217259823014548361:lndtuqkycfu

Fetching Lyrics Manually

The lyrics command provided by this plugin fetches lyrics for items that match a query (see Queries). For exam-
ple, beet lyrics magnetic fields absolutely cuckoo will get the lyrics for the appropriate Mag-
netic Fields song, beet lyrics magnetic fields will get lyrics for all my tracks by that band, and beet
lyrics will get lyrics for my entire library. The lyrics will be added to the beets database and, if import.write
is on, embedded into files’ metadata.

The -p option to the lyrics command makes it print lyrics out to the console so you can view the fetched (or
previously-stored) lyrics.

76 Chapter 1. Contents

http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/
https://www.google.com:443/cse/publicurl?cx=009217259823014548361:lndtuqkycfu

beets Documentation, Release 1.4.7

The -f option forces the command to fetch lyrics, even for tracks that already have lyrics. Inversely, the -l option
restricts operations to lyrics that are locally available, which show lyrics faster without using the network at all.

Rendering Lyrics into Other Formats

The -r directory option renders all lyrics as reStructuredText (ReST) documents in directory (by default,
the current directory). That directory, in turn, can be parsed by tools like Sphinx to generate HTML, ePUB, or PDF
documents.

A minimal conf.py and index.rst files are created the first time the command is run. They are not overwritten
on subsequent runs, so you can safely modify these files to customize the output.

Sphinx supports various builders, but here are a few suggestions.

• Build an HTML version:

sphinx-build -b html . _build/html

• Build an ePUB3 formatted file, usable on ebook readers:

sphinx-build -b epub3 . _build/epub

• Build a PDF file, which incidentally also builds a LaTeX file:

sphinx-build -b latex %s _build/latex && make -C _build/latex all-pdf

Activate Google Custom Search

Using the Google backend requires BeautifulSoup, which you can install using pip by typing:

pip install beautifulsoup4

You also need to register for a Google API key. Set the google_API_key configuration option to your key. Then
add google to the list of sources in your configuration (or use default list, which includes it as long as you have an
API key). If you use default google_engine_ID, we recommend limiting the sources to musixmatch google
as the other sources are already included in the Google results.

Optionally, you can define a custom search engine. Get your search engine’s token and use it for your
google_engine_ID configuration option. By default, beets use a list of sources known to be scrapeable.

Note that the Google custom search API is limited to 100 queries per day. After that, the lyrics plugin will fall back
on other declared data sources.

Activate Genius Lyrics

Like the Google backend, the Genius backend requires the BeautifulSoup library. Install it by typing:

pip install beautifulsoup4

The backend is enabled by default.

1.3. Plugins 77

http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/en/stable/builders.html
http://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.pip-installer.org/
https://console.developers.google.com/
http://www.google.com/cse/all
http://www.crummy.com/software/BeautifulSoup/bs4/doc/

beets Documentation, Release 1.4.7

Activate On-the-Fly Translation

Using the Bing Translation API requires langdetect, which you can install using pip by typing:

pip install langdetect

You also need to register for a Microsoft Azure Marketplace free account and to the Microsoft Translator API. Follow
the four steps process, specifically at step 3 enter beets as Client ID and copy/paste the generated Client secret into
your bing_client_secret configuration, alongside bing_lang_to target language code.

MusicBrainz Collection Plugin

The mbcollection plugin lets you submit your catalog to MusicBrainz to maintain your music collection list there.

To begin, just enable the mbcollection plugin in your configuration (see Using Plugins). Then, add your Mu-
sicBrainz username and password to your configuration file under a musicbrainz section:

musicbrainz:
user: you
pass: seekrit

Then, use the beet mbupdate command to send your albums to MusicBrainz. The command automatically adds
all of your albums to the first collection it finds. If you don’t have a MusicBrainz collection yet, you may need to add
one to your profile first.

The command has one command-line option:

• To remove albums from the collection which are no longer present in the beets database, use the -r
(--remove) flag.

Configuration

To configure the plugin, make a mbcollection: section in your configuration file. There is one option available:

• auto: Automatically amend your MusicBrainz collection whenever you import a new album. Default: no.

• collection: Which MusicBrainz collection to update. Default: None.

• remove: Remove albums from collections which are no longer present in the beets database. Default: None.

MusicBrainz Submit Plugin

The mbsubmit plugin provides an extra prompt choice during an import session that prints the tracks of the current
album in a format that is parseable by MusicBrainz’s track parser.

Usage

Enable the mbsubmit plugin in your configuration (see Using Plugins) and select the Print tracks choice which
is by default displayed when no strong recommendations are found for the album:

No matching release found for 3 tracks.
For help, see: http://beets.readthedocs.org/en/latest/faq.html#nomatch
[U]se as-is, as Tracks, Group albums, Skip, Enter search, enter Id, aBort,
Print tracks? p

(continues on next page)

78 Chapter 1. Contents

https://pypi.python.org/pypi/langdetect
http://www.pip-installer.org/
https://www.microsoft.com/en-us/translator/getstarted.aspx
https://msdn.microsoft.com/en-us/library/hh456380.aspx
http://musicbrainz.org/doc/Collections
http://wiki.musicbrainz.org/History:How_To_Parse_Track_Listings

beets Documentation, Release 1.4.7

(continued from previous page)

01. An Obscure Track - An Obscure Artist (3:37)
02. Another Obscure Track - An Obscure Artist (2:05)
03. The Third Track - Another Obscure Artist (3:02)

No matching release found for 3 tracks.
For help, see: http://beets.readthedocs.org/en/latest/faq.html#nomatch
[U]se as-is, as Tracks, Group albums, Skip, Enter search, enter Id, aBort,
Print tracks?

As MusicBrainz currently does not support submitting albums programmatically, the recommended workflow is to
copy the output of the Print tracks choice and paste it into the parser that can be found by clicking on the “Track
Parser” button on MusicBrainz “Tracklist” tab.

Configuration

To configure the plugin, make a mbsubmit: section in your configuration file. The following options are available:

• format: The format used for printing the tracks, defined using the same template syntax as beets’ path formats.
Default: $track. $title - $artist ($length).

• threshold: The minimum strength of the autotagger recommendation that will cause the Print tracks
choice to be displayed on the prompt. Default: medium (causing the choice to be displayed for all albums that
have a recommendation of medium strength or lower). Valid values: none, low, medium, strong.

Please note that some values of the threshold configuration option might require other beets command line
switches to be enabled in order to work as intended. In particular, setting a threshold of strong will only display the
prompt if timid mode is enabled. You can find more information about how the recommendation system works at
Autotagger Matching Options.

MBSync Plugin

This plugin provides the mbsync command, which lets you fetch metadata from MusicBrainz for albums and tracks
that already have MusicBrainz IDs. This is useful for updating tags as they are fixed in the MusicBrainz database, or
when you change your mind about some config options that change how tags are written to files. If you have a music
library that is already nicely tagged by a program that also uses MusicBrainz like Picard, this can speed up the initial
import if you just import “as-is” and then use mbsync to get up-to-date tags that are written to the files according to
your beets configuration.

Usage

Enable the mbsync plugin in your configuration (see Using Plugins) and then run beet mbsync QUERY to fetch
updated metadata for a part of your collection (or omit the query to run over your whole library).

This plugin treats albums and singletons (non-album tracks) separately. It first processes all matching singletons and
then proceeds on to full albums. The same query is used to search for both kinds of entities.

The command has a few command-line options:

• To preview the changes that would be made without applying them, use the -p (--pretend) flag.

• By default, files will be moved (renamed) according to their metadata if they are inside your beets library
directory. To disable this, use the -M (--nomove) command-line option.

• If you have the import.write configuration option enabled, then this plugin will write new metadata to files’ tags.
To disable this, use the -W (--nowrite) option.

1.3. Plugins 79

beets Documentation, Release 1.4.7

• To customize the output of unrecognized items, use the -f (--format) option. The default output is
format_item or format_album for items and albums, respectively.

MetaSync Plugin

This plugin provides the metasync command, which lets you fetch certain metadata from other sources: for example,
your favorite audio player.

Currently, the plugin supports synchronizing with the Amarok music player, and with iTunes. It can fetch the rating,
score, first-played date, last-played date, play count, and track uid from Amarok.

Installation

Enable the metasync plugin in your configuration (see Using Plugins).

To synchronize with Amarok, you’ll need the dbus-python library. There are packages for most major Linux distribu-
tions.

Configuration

To configure the plugin, make a metasync: section in your configuration file. The available options are:

• source: A list of comma-separated sources to fetch metadata from. Set this to “amarok” or “itunes” to enable
synchronization with that player. Default: empty

The follow subsections describe additional configure required for some players.

itunes

The path to your iTunes library xml file has to be configured, e.g.:

metasync:
source: itunes
itunes:

library: ~/Music/iTunes Library.xml

Please note the indentation.

Usage

Run beet metasync QUERY to fetch metadata from the configured list of sources.

The command has a few command-line options:

• To preview the changes that would be made without applying them, use the -p (--pretend) flag.

• To specify temporary sources to fetch metadata from, use the -s (--source) flag with a comma-separated list
of a sources.

80 Chapter 1. Contents

https://amarok.kde.org/
https://www.apple.com/itunes/
http://dbus.freedesktop.org/releases/dbus-python/

beets Documentation, Release 1.4.7

Missing Plugin

This plugin adds a new command, missing or miss, which finds and lists, for every album in your collection,
which or how many tracks are missing. Listing missing files requires one network call to MusicBrainz. Merely
counting missing files avoids any network calls.

Usage

Add the missing plugin to your configuration (see Using Plugins). By default, the beet missing command lists
the names of tracks that your library is missing from each album. It can also list the names of albums that your library
is missing from each artist. You can customize the output format, count the number of missing tracks per album, or
total up the number of missing tracks over your whole library, using command-line switches:

-f FORMAT, --format=FORMAT
print with custom FORMAT

-c, --count count missing tracks per album
-t, --total count total of missing tracks or albums
-a, --album show missing albums for artist instead of tracks

. . . or by editing corresponding options.

Note that -c is ignored when used with -a.

Configuration

To configure the plugin, make a missing: section in your configuration file. The available options are:

• count: Print a count of missing tracks per album, with format defaulting to $albumartist - $album:
$missing. Default: no.

• format: A specific format with which to print every track. This uses the same template syntax as beets’ path
formats. The usage is inspired by, and therefore similar to, the list command. Default: format_item.

• total: Print a single count of missing tracks in all albums. Default: no.

Here’s an example

missing:
format: $albumartist - $album - $title
count: no
total: no

Template Fields

With this plugin enabled, the $missing template field expands to the number of tracks missing from each album.

Examples

List all missing tracks in your collection:

beet missing

List all missing albums in your collection:

1.3. Plugins 81

beets Documentation, Release 1.4.7

beet missing -a

List all missing tracks from 2008:

beet missing year:2008

Print out a unicode histogram of the missing track years using spark:

beet missing -f '$year' | spark

Print out a listing of all albums with missing tracks, and respective counts:

beet missing -c

Print out a count of the total number of missing tracks:

beet missing -t

Call this plugin from other beet commands:

beet ls -a -f '$albumartist - $album: $missing'

MPDStats Plugin

mpdstats is a plugin for beets that collects statistics about your listening habits from MPD. It collects the following
information about tracks:

• play_count: The number of times you fully listened to this track.

• skip_count: The number of times you skipped this track.

• last_played: UNIX timestamp when you last played this track.

• rating: A rating based on play_count and skip_count.

Installing Dependencies

This plugin requires the python-mpd2 library in order to talk to the MPD server.

Install the library from pip, like so:

$ pip install python-mpd2

Add the mpdstats plugin to your configuration (see Using Plugins).

Usage

Use the mpdstats command to fire it up:

$ beet mpdstats

82 Chapter 1. Contents

https://github.com/holman/spark
http://www.musicpd.org/
http://www.pip-installer.org/

beets Documentation, Release 1.4.7

Configuration

To configure the plugin, make an mpd: section in your configuration file. The available options are:

• host: The MPD server hostname. Default: The $MPD_HOST environment variable if set, falling back to
localhost otherwise.

• port: The MPD server port. Default: 6600.

• password: The MPD server password. Default: None.

• music_directory: If your MPD library is at a different location from the beets library (e.g., because one is
mounted on a NFS share), specify the path here. Default: The beets library directory.

• rating: Enable rating updates. Default: yes.

• rating_mix: Tune the way rating is calculated (see below). Default: 0.75.

A Word on Ratings

Ratings are calculated based on the play_count, skip_count and the last action (play or skip). It consists in one part of
a stable_rating and in another part on a rolling_rating. The stable_rating is calculated like this:

stable_rating = (play_count + 1.0) / (play_count + skip_count + 2.0)

So if the play_count equals the skip_count, the stable_rating is always 0.5. More play_counts adjust the rating up to
1.0. More skip_counts adjust it down to 0.0. One of the disadvantages of this rating system, is that it doesn’t really
cover recent developments. e.g. a song that you loved last year and played over 50 times will keep a high rating even
if you skipped it the last 10 times. That’s were the rolling_rating comes in.

If a song has been fully played, the rolling_rating is calculated like this:

rolling_rating = old_rating + (1.0 - old_rating) / 2.0

If a song has been skipped, like this:

rolling_rating = old_rating - old_rating / 2.0

So rolling_rating adapts pretty fast to recent developments. But it’s too fast. Taking the example from above, your old
favorite with 50 plays will get a negative rating (<0.5) the first time you skip it. Also not good.

To take the best of both worlds, we mix the ratings together with the rating_mix factor. A rating_mix of 0.0
means all rolling and 1.0 means all stable. We found 0.75 to be a good compromise, but fell free to play with that.

Warning

This has only been tested with MPD versions >= 0.16. It may not work on older versions. If that is the case, please
report an issue.

MPDUpdate Plugin

mpdupdate is a very simple plugin for beets that lets you automatically update MPD’s index whenever you change
your beets library.

To use mpdupdate plugin, enable it in your configuration (see Using Plugins). Then, you’ll probably want to
configure the specifics of your MPD server. You can do that using an mpd: section in your config.yaml, which
looks like this:

1.3. Plugins 83

https://github.com/beetbox/beets/issues
http://www.musicpd.org/

beets Documentation, Release 1.4.7

mpd:
host: localhost
port: 6600
password: seekrit

With that all in place, you’ll see beets send the “update” command to your MPD server every time you change your
beets library.

If you want to communicate with MPD over a Unix domain socket instead over TCP, just give the path to the socket in
the filesystem for the host setting. (Any host value starting with a slash or a tilde is interpreted as a domain socket.)

Configuration

The available options under the mpd: section are:

• host: The MPD server name. Default: The $MPD_HOST environment variable if set, falling back to
localhost otherwise.

• port: The MPD server port. Default: 6600.

• password: The MPD server password. Default: None.

Permissions Plugin

The permissions plugin allows you to set file permissions for imported music files and its directories.

To use the permissions plugin, enable it in your configuration (see Using Plugins). Permissions will be adjusted
automatically on import.

Configuration

To configure the plugin, make an permissions: section in your configuration file. The file config value therein
uses octal modes to specify the desired permissions. The default flags for files are octal 644 and 755 for directories.

Here’s an example:

permissions:
file: 644
dir: 755

Play Plugin

The play plugin allows you to pass the results of a query to a music player in the form of an m3u playlist or paths on
the command line.

Command Line Usage

To use the play plugin, enable it in your configuration (see Using Plugins). Then use it by invoking the beet play
command with a query. The command will create a temporary m3u file and open it using an appropriate application.
You can query albums instead of tracks using the -a option.

By default, the playlist is opened using the open command on OS X, xdg-open on other Unixes, and start on
Windows. To configure the command, you can use a play: section in your configuration file:

84 Chapter 1. Contents

beets Documentation, Release 1.4.7

play:
command: /Applications/VLC.app/Contents/MacOS/VLC

You can also specify additional space-separated options to command (like you would on the command-line):

play:
command: /usr/bin/command --option1 --option2 some_other_option

While playing you’ll be able to interact with the player if it is a command-line oriented, and you’ll get its output in
real time.

Interactive Usage

The play plugin can also be invoked during an import. If enabled, the plugin adds a plaY option to the prompt, so
pressing y will execute the configured command and play the items currently being imported.

Once the configured command exits, you will be returned to the import decision prompt. If your player is configured
to run in the background (in a client/server setup), the music will play until you choose to stop it, and the import
operation continues immediately.

Configuration

To configure the plugin, make a play: section in your configuration file. The available options are:

• command: The command used to open the playlist. Default: open on OS X, xdg-open on other Unixes and
start on Windows. Insert $args to use the --args feature.

• relative_to: If set, emit paths relative to this directory. Default: None.

• use_folders: When using the -a option, the m3u will contain the paths to each track on the matched albums.
Enable this option to store paths to folders instead. Default: no.

• raw: Instead of creating a temporary m3u playlist and then opening it, simply call the command with the paths
returned by the query as arguments. Default: no.

• warning_threshold: Set the minimum number of files to play which will trigger a warning to be emitted. If set
to no, warning are never issued. Default: 100.

Optional Arguments

The --args (or -A) flag to the play command lets you specify additional arguments for your player command.
Options are inserted after the configured command string and before the playlist filename.

For example, if you have the plugin configured like this:

play:
command: mplayer -quiet

and you occasionally want to shuffle the songs you play, you can type:

$ beet play --args -shuffle

to get beets to execute this command:

1.3. Plugins 85

beets Documentation, Release 1.4.7

mplayer -quiet -shuffle /path/to/playlist.m3u

instead of the default.

If you need to insert arguments somewhere other than the end of the command string, use $args to indicate where
to insert them. For example:

play:
command: mpv $args --playlist

indicates that you need to insert extra arguments before specifying the playlist.

The --yes (or -y) flag to the play command will skip the warning message if you choose to play more items than
the warning_threshold value usually allows.

Note on the Leakage of the Generated Playlists

Because the command that will open the generated .m3u files can be arbitrarily configured by the user, beets won’t try
to delete those files. For this reason, using this plugin will leave one or several playlist(s) in the directory selected to
create temporary files (Most likely /tmp/ on Unix-like systems. See tempfile.tempdir in the Python docs.). Leaking
those playlists until they are externally wiped could be an issue for privacy or storage reasons. If this is the case for
you, you might want to use the raw config option described above.

PlexUpdate Plugin

plexupdate is a very simple plugin for beets that lets you automatically update Plex’s music library whenever you
change your beets library.

To use plexupdate plugin, enable it in your configuration (see Using Plugins). Then, you’ll probably want to
configure the specifics of your Plex server. You can do that using an plex: section in your config.yaml, which
looks like this:

plex:
host: localhost
port: 32400
token: token

The token key is optional: you’ll need to use it when in a Plex Home (see Plex’s own documentation about tokens).

To use the plexupdate plugin you need to install the requests library with:

pip install requests

With that all in place, you’ll see beets send the “update” command to your Plex server every time you change your
beets library.

Configuration

The available options under the plex: section are:

• host: The Plex server name. Default: localhost.

• port: The Plex server port. Default: 32400.

• token: The Plex Home token. Default: Empty.

• library_name: The name of the Plex library to update. Default: Music

86 Chapter 1. Contents

https://docs.python.org/2/library/tempfile.html#tempfile.tempdir
http://plex.tv/
https://support.plex.tv/hc/en-us/articles/204059436-Finding-your-account-token-X-Plex-Token
http://docs.python-requests.org/en/latest/

beets Documentation, Release 1.4.7

Random Plugin

The random plugin provides a command that randomly selects tracks or albums from your library. This can be helpful
if you need some help deciding what to listen to.

First, enable the plugin named random (see Using Plugins). You’ll then be able to use the beet random command:

$ beet random
Aesop Rock - None Shall Pass - The Harbor Is Yours

The command has several options that resemble those for the beet list command (see Command-Line Interface).
To choose an album instead of a single track, use -a; to print paths to items instead of metadata, use -p; and to use a
custom format for printing, use -f FORMAT.

If the -e option is passed, the random choice will be even among artists (the albumartist field). This makes sure that
your anthology of Bob Dylan won’t make you listen to Bob Dylan 50% of the time.

The -n NUMBER option controls the number of objects that are selected and printed (default 1). To select 5 tracks
from your library, type beet random -n5.

As an alternative, you can use -t MINUTES to choose a set of music with a given play time. To select tracks that
total one hour, for example, type beet random -t60.

ReplayGain Plugin

This plugin adds support for ReplayGain, a technique for normalizing audio playback levels.

Installation

This plugin can use one of four backends to compute the ReplayGain values: GStreamer, mp3gain (and its cousin,
aacgain), Python Audio Tools and bs1770gain. mp3gain can be easier to install but GStreamer, Audio Tools and
bs1770gain support more audio formats.

Once installed, this plugin analyzes all files during the import process. This can be a slow process; to instead analyze
after the fact, disable automatic analysis and use the beet replaygain command (see below).

GStreamer

To use GStreamer for ReplayGain analysis, you will of course need to install GStreamer and plugins for compatibility
with your audio files. You will need at least GStreamer 1.0 and PyGObject 3.x (a.k.a. python-gi).

Then, enable the replaygain plugin (see Using Plugins) and specify the GStreamer backend by adding this to your
configuration file:

replaygain:
backend: gstreamer

mp3gain and aacgain

In order to use this backend, you will need to install the mp3gain command-line tool or the aacgain fork thereof. Here
are some hints:

• On Mac OS X, you can use Homebrew. Type brew install aacgain.

1.3. Plugins 87

http://wiki.hydrogenaudio.org/index.php?title=ReplayGain
http://gstreamer.freedesktop.org/
https://wiki.gnome.org/action/show/Projects/PyGObject
http://mp3gain.sourceforge.net/download.php
http://aacgain.altosdesign.com
http://mxcl.github.com/homebrew/

beets Documentation, Release 1.4.7

• On Linux, mp3gain is probably in your repositories. On Debian or Ubuntu, for example, you can run apt-get
install mp3gain.

• On Windows, download and install the original mp3gain.

Then, enable the plugin (see Using Plugins) and specify the “command” backend in your configuration file:

replaygain:
backend: command

If beets doesn’t automatically find the mp3gain or aacgain executable, you can configure the path explicitly like
so:

replaygain:
command: /Applications/MacMP3Gain.app/Contents/Resources/aacgain

Python Audio Tools

This backend uses the Python Audio Tools package to compute ReplayGain for a range of different file formats. The
package is not available via PyPI; it must be installed manually (only versions preceding 3.x are compatible).

On OS X, most of the dependencies can be installed with Homebrew:

brew install mpg123 mp3gain vorbisgain faad2 libvorbis

bs1770gain

To use this backend, you will need to install the bs1770gain command-line tool, version 0.4.6 or greater. Follow the
instructions at the bs1770gain Web site and ensure that the tool is on your $PATH.

Then, enable the plugin (see Using Plugins) and specify the backend in your configuration file:

replaygain:
backend: bs1770gain

For Windows users: the tool currently has issues with long and non-ASCII path names. You may want to use the
asciify_paths configuration option until this is resolved.

Configuration

To configure the plugin, make a replaygain: section in your configuration file. The available options are:

• auto: Enable ReplayGain analysis during import. Default: yes.

• backend: The analysis backend; either gstreamer, command, or audiotools. Default: command.

• overwrite: Re-analyze files that already have ReplayGain tags. Default: no.

• targetlevel: A number of decibels for the target loudness level. Default: 89.

• r128: A space separated list of formats that will use R128_ tags with integer values instead of the common
REPLAYGAIN_ tags with floating point values. Requires the “bs1770gain” backend. Default: Opus.

These options only work with the “command” backend:

88 Chapter 1. Contents

http://mp3gain.sourceforge.net/download.php
http://mp3gain.sourceforge.net/download.php
http://audiotools.sourceforge.net
http://mxcl.github.com/homebrew/
http://bs1770gain.sourceforge.net/
http://bs1770gain.sourceforge.net/

beets Documentation, Release 1.4.7

• command: The path to the mp3gain or aacgain executable (if beets cannot find it by itself). For ex-
ample: /Applications/MacMP3Gain.app/Contents/Resources/aacgain. Default: Search in
your $PATH.

• noclip: Reduce the amount of ReplayGain adjustment to whatever amount would keep clipping from occurring.
Default: yes.

These options only works with the “bs1770gain” backend:

• method: The loudness scanning standard: either replaygain for ReplayGain 2.0, ebu for EBU R128, or atsc for
ATSC A/85. This dictates the reference level: -18, -23, or -24 LUFS respectively. Default: replaygain

• chunk_at: Splits an album in groups of tracks of this amount. Usefull when running into memory problems
when analysing albums with an exceptionally large amount of tracks. Default:5000

Manual Analysis

By default, the plugin will analyze all items an albums as they are implemented. However, you can also manually
analyze files that are already in your library. Use the beet replaygain command:

$ beet replaygain [-Waf] [QUERY]

The -a flag analyzes whole albums instead of individual tracks. Provide a query (see Queries) to indicate which items
or albums to analyze. Files that already have ReplayGain values are skipped unless -f is supplied. Use -w (write
tags) or -W (don’t write tags) to control whether ReplayGain tags are written into the music files, or stored in the beets
database only (the default is to use the importer’s configuration).

ReplayGain analysis is not fast, so you may want to disable it during import. Use the auto config option to control
this:

replaygain:
auto: no

Rewrite Plugin

The rewrite plugin lets you easily substitute values in your templates and path formats. Specifically, it is intended to
let you canonicalize names such as artists: for example, perhaps you want albums from The Jimi Hendrix Experience
to be sorted into the same folder as solo Hendrix albums.

To use field rewriting, first enable the rewrite plugin (see Using Plugins). Then, make a rewrite: section in
your config file to contain your rewrite rules. Each rule consists of a field name, a regular expression pattern, and a
replacement value. Rules are written fieldname regex: replacement. For example, this line implements
the Jimi Hendrix example above:

rewrite:
artist The Jimi Hendrix Experience: Jimi Hendrix

This will make $artist in your templates expand to “Jimi Hendrix” where it would otherwise be “The Jimi Hendrix
Experience”.

The pattern is a case-insensitive regular expression. This means you can use ordinary regular expression syntax to
match multiple artists. For example, you might use:

rewrite:
artist .*jimi hendrix.*: Jimi Hendrix

1.3. Plugins 89

beets Documentation, Release 1.4.7

As a convenience, the plugin applies patterns for the artist field to the albumartist field as well. (Otherwise,
you would probably want to duplicate every rule for artist and albumartist.)

Note that this plugin only applies to templating; it does not modify files’ metadata tags or the values tracked by beets’
library database.

Scrub Plugin

The scrub plugin lets you remove extraneous metadata from files’ tags. If you’d prefer never to see crufty tags that
come from other tools, the plugin can automatically remove all non-beets-tracked tags whenever a file’s metadata is
written to disk by removing the tag entirely before writing new data. The plugin also provides a command that lets
you manually remove files’ tags.

Automatic Scrubbing

To automatically remove files’ tags before writing new ones, just enable the scrub plugin (see Using Plugins). When
importing new files (with import.write turned on) or modifying files’ tags with the beet modify command,
beets will first strip all types of tags entirely and then write the database-tracked metadata to the file.

This behavior can be disabled with the auto config option (see below).

Manual Scrubbing

The scrub command provided by this plugin removes tags from files and then rewrites their database-tracked meta-
data. To run it, just type beet scrub QUERY where QUERY matches the tracks to be scrubbed. Use this command
with caution, however, because any information in the tags that is out of sync with the database will be lost.

The -W (or --nowrite) option causes the command to just remove tags but not restore any information. This will
leave the files with no metadata whatsoever.

Configuration

To configure the plugin, make a scrub: section in your configuration file. There is one option:

• auto: Enable metadata stripping during import. Default: yes.

Smart Playlist Plugin

smartplaylist is a plugin to generate smart playlists in m3u format based on beets queries every time your library
changes. This plugin is specifically created to work well with MPD’s playlist functionality.

To use it, enable the smartplaylist plugin in your configuration (see Using Plugins). Then configure your smart
playlists like the following example:

smartplaylist:
relative_to: ~/Music
playlist_dir: ~/.mpd/playlists
playlists:

- name: all.m3u
query: ''

- name: beatles.m3u
query: 'artist:Beatles'

90 Chapter 1. Contents

http://www.musicpd.org/

beets Documentation, Release 1.4.7

You can generate as many playlists as you want by adding them to the playlists section, using beets query syntax
(see Queries) for query and the file name to be generated for name. The query will be split using shell-like syntax,
so if you need to use spaces in the query, be sure to quote them (e.g., artist:"The Beatles"). If you have
existing files with the same names, you should back them up—they will be overwritten when the plugin runs.

For more advanced usage, you can use template syntax (see Path Formats) in the name field. For example:

- name: 'ReleasedIn$year.m3u'
query: 'year::201(0|1)'

This will query all the songs in 2010 and 2011 and generate the two playlist files ReleasedIn2010.m3u and Re-
leasedIn2011.m3u using those songs.

You can also gather the results of several queries by putting them in a list. (Items that match both queries are not
included twice.) For example:

- name: 'BeatlesUniverse.m3u'
query: ['artist:beatles', 'genre:"beatles cover"']

Note that since beets query syntax is in effect, you can also use sorting directives:

- name: 'Chronological Beatles'
query: 'artist:Beatles year+'

- name: 'Mixed Rock'
query: ['artist:Beatles year+', 'artist:"Led Zeppelin" bitrate+']

The former case behaves as expected, however please note that in the latter the sorts will be merged: year+
bitrate+ will apply to both the Beatles and Led Zeppelin. If that bothers you, please get in touch.

For querying albums instead of items (mainly useful with extensible fields), use the album_query field. query and
album_query can be used at the same time. The following example gathers single items but also items belonging
to albums that have a for_travel extensible field set to 1:

- name: 'MyTravelPlaylist.m3u'
album_query: 'for_travel:1'
query: 'for_travel:1'

By default, each playlist is automatically regenerated at the end of the session if an item or album it matches changed
in the library database. To force regeneration, you can invoke it manually from the command line:

$ beet splupdate

This will regenerate all smart playlists. You can also specify which ones you want to regenerate:

$ beet splupdate BeatlesUniverse.m3u MyTravelPlaylist

You can also use this plugin together with the MPDUpdate Plugin, in order to automatically notify MPD of the playlist
change, by adding mpdupdate to the plugins line in your config file after the smartplaylist plugin.

Configuration

To configure the plugin, make a smartplaylist: section in your configuration file. In addition to the playlists
described above, the other configuration options are:

• auto: Regenerate the playlist after every database change. Default: yes.

• playlist_dir: Where to put the generated playlist files. Default: The current working directory (i.e., '.').

1.3. Plugins 91

beets Documentation, Release 1.4.7

• relative_to: Generate paths in the playlist files relative to a base directory. If you intend to use this plugin to
generate playlists for MPD, point this to your MPD music directory. Default: Use absolute paths.

SonosUpdate Plugin

The sonosupdate plugin lets you automatically update Sonos’s music library whenever you change your beets
library.

To use sonosupdate plugin, enable it in your configuration (see Using Plugins).

To use the sonosupdate plugin you need to install the soco library with:

pip install soco

With that all in place, you’ll see beets send the “update” command to your Sonos controller every time you change
your beets library.

Spotify Plugin

The spotify plugin generates Spotify playlists from tracks in your library. Using the Spotify Web API, any tracks
that can be matched with a Spotify ID are returned, and the results can be either pasted in to a playlist or opened
directly in the Spotify app.

Why Use This Plugin?

• You’re a Beets user and Spotify user already.

• You have playlists or albums you’d like to make available in Spotify from Beets without having to search for
each artist/album/track.

• You want to check which tracks in your library are available on Spotify.

Basic Usage

First, enable the spotify plugin (see Using Plugins). Then, use the spotify command with a beets query:

beet spotify [OPTIONS...] QUERY

Here’s an example:

$ beet spotify "In The Lonely Hour"
Processing 14 tracks...
http://open.spotify.com/track/19w0OHr8SiZzRhjpnjctJ4
http://open.spotify.com/track/3PRLM4FzhplXfySa4B7bxS
[...]

Command-line options include:

• -m MODE or --mode=MODE where MODE is either “list” or “open” controls whether to print out the playlist
(for copying and pasting) or open it in the Spotify app. (See below.)

• --show-failures or -f: List the tracks that did not match a Spotify ID.

92 Chapter 1. Contents

http://sonos.com/
http://python-soco.com
https://www.spotify.com/
https://developer.spotify.com/web-api/search-item/

beets Documentation, Release 1.4.7

Configuration

The default options should work as-is, but there are some options you can put in config.yaml under the spotify:
section:

• mode: One of the following:

– list: Print out the playlist as a list of links. This list can then be pasted in to a new or existing Spotify
playlist.

– open: This mode actually sends a link to your default browser with instructions to open Spotify with the
playlist you created. Until this has been tested on all platforms, it will remain optional.

Default: list.

• region_filter: A two-character country abbreviation, to limit results to that market. Default: None.

• show_failures: List each lookup that does not return a Spotify ID (and therefore cannot be added to a playlist).
Default: no.

• tiebreak: How to choose the track if there is more than one identical result. For example, there might be
multiple releases of the same album. The options are popularity and first (to just choose the first match
returned). Default: popularity.

• regex: An array of regex transformations to perform on the track/album/artist fields before sending them to
Spotify. Can be useful for changing certain abbreviations, like ft. -> feat. See the examples below. Default:
None.

Here’s an example:

spotify:
mode: open
region_filter: US
show_failures: on
tiebreak: first

regex: [
{

field: "albumartist", # Field in the item object to regex.
search: "Something", # String to look for.
replace: "Replaced" # Replacement value.

},
{

field: "title",
search: "Something Else",
replace: "AlsoReplaced"

}
]

The Plugin

The the plugin allows you to move patterns in path formats. It’s suitable, for example, for moving articles from string
start to the end. This is useful for quick search on filesystems and generally looks good. Plugin does not change tags.
By default plugin supports English “the, a, an”, but custom regexp patterns can be added by user. How it works:

The Something -> Something, The
A Band -> Band, A
An Orchestra -> Orchestra, An

1.3. Plugins 93

beets Documentation, Release 1.4.7

To use the the plugin, enable it (see Plugins) and then use a template function called %the in path format expressions:

paths:
default: %the{$albumartist}/($year) $album/$track $title

The default configuration moves all English articles to the end of the string, but you can override these defaults to
make more complex changes.

Configuration

To configure the plugin, make a the: section in your configuration file. The available options are:

• a: Handle “A/An” moves. Default: yes.

• the: handle “The” moves. Default: yes.

• patterns: Custom regexp patterns, space-separated. Custom patterns are case-insensitive regular expressions.
Patterns can be matched anywhere in the string (not just the beginning), so use ^ if you intend to match leading
words. Default: [].

• strip: Remove the article altogether instead of moving it to the end. Default: no.

• format: A Python format string for the output. Use {0} to indicate the part without the article and {1} for the
article. Spaces are already trimmed from ends of both parts. Default: '{0}, {1}'.

Thumbnails Plugin

The thumbnails plugin creates thumbnails for your album folders with the album cover. This works on
freedesktop.org-compliant file managers such as Nautilus or Thunar, and is therefore POSIX-only.

To use the thumbnails plugin, enable it (see Plugins) as well as the FetchArt Plugin. You’ll need 2 additional
python packages: pyxdg and pathlib.

thumbnails needs to resize the covers, and therefore requires either ImageMagick or Pillow.

Configuration

To configure the plugin, make a thumbnails section in your configuration file. The available options are

• auto: Whether the thumbnail should be automatically set on import. Default: yes.

• force: Generate the thumbnail even when there’s one that seems fine (more recent than the cover art). Default:
no.

• dolphin: Generate dolphin-compatible thumbnails. Dolphin (KDE file explorer) does not respect freedesk-
top.org’s standard on thumbnails. This functionality replaces the Freedesktop Plugin Default: no

Usage

The thumbnails command provided by this plugin creates a thumbnail for albums that match a query (see Queries).

94 Chapter 1. Contents

http://www.imagemagick.org/
https://github.com/python-pillow/Pillow

beets Documentation, Release 1.4.7

Types Plugin

The types plugin lets you declare types for attributes you use in your library. For example, you can declare that a
rating field is numeric so that you can query it with ranges—which isn’t possible when the field is considered a
string (the default).

Enable the types plugin as described in Plugins and then add a types section to your configuration file. The
configuration section should map field name to one of int, float, bool, or date.

Here’s an example:

types:
rating: int

Now you can assign numeric ratings to tracks and albums and use range queries to filter them.:

beet modify "My favorite track" rating=5
beet ls rating:4..5

beet modify --album "My favorite album" rating=5
beet ls --album rating:4..5

Web Plugin

The web plugin is a very basic alternative interface to beets that supplements the CLI. It can’t do much right now,
and the interface is a little clunky, but you can use it to query and browse your music and—in browsers that support
HTML5 Audio—you can even play music.

While it’s not meant to replace the CLI, a graphical interface has a number of advantages in certain situations. For
example, when editing a tag, a natural CLI makes you retype the whole thing—common GUI conventions can be used
to just edit the part of the tag you want to change. A graphical interface could also drastically increase the number of
people who can use beets.

Install

The Web interface depends on Flask. To get it, just run pip install flask. Then enable the web plugin in your
configuration (see Using Plugins).

If you need CORS (it’s disabled by default—see Cross-Origin Resource Sharing (CORS), below), then you also need
flask-cors. Just type pip install flask-cors.

Run the Server

Then just type beet web to start the server and go to http://localhost:8337/. This is what it looks like:

1.3. Plugins 95

http://flask.pocoo.org/
https://github.com/CoryDolphin/flask-cors
http://localhost:8337/

beets Documentation, Release 1.4.7

You can also specify the hostname and port number used by the Web server. These can be specified on the command
line or in the [web] section of your configuration file.

On the command line, use beet web [HOSTNAME] [PORT]. Or the configuration options below.

Usage

Type queries into the little search box. Double-click a track to play it with HTML5 Audio.

Configuration

To configure the plugin, make a web: section in your configuration file. The available options are:

• host: The server hostname. Set this to 0.0.0.0 to bind to all interfaces. Default: Bind to 127.0.0.1.

• port: The server port. Default: 8337.

• cors: The CORS allowed origin (see Cross-Origin Resource Sharing (CORS), below). Default: CORS is dis-
abled.

• cors_supports_credentials: Support credentials when using CORS (see Cross-Origin Resource Sharing
(CORS), below). Default: CORS_SUPPORTS_CREDENTIALS is disabled.

• reverse_proxy: If true, enable reverse proxy support (see Reverse Proxy Support, below). Default: false.

• include_paths: If true, includes paths in item objects. Default: false.

96 Chapter 1. Contents

http://www.w3.org/TR/html-markup/audio.html

beets Documentation, Release 1.4.7

Implementation

The Web backend is built using a simple REST+JSON API with the excellent Flask library. The frontend is a single-
page application written with Backbone.js. This allows future non-Web clients to use the same backend API.

Eventually, to make the Web player really viable, we should use a Flash fallback for unsupported formats/browsers.
There are a number of options for this:

• audio.js

• html5media

• MediaElement.js

Cross-Origin Resource Sharing (CORS)

The web plugin’s API can be used as a backend for an in-browser client. By default, browsers will only allow
access from clients running on the same server as the API. (You will get an arcane error about XMLHttpRequest
otherwise.) A technology called CORS lets you relax this restriction.

If you want to use an in-browser client hosted elsewhere (or running from a different server on your machine), first
install the flask-cors plugin by typing pip install flask-cors. Then set the cors configuration option to the
“origin” (protocol, host, and optional port number) where the client is served. Or set it to '*' to enable access from
all origins. Note that there are security implications if you set the origin to '*', so please research this before using
it.

If the web server is behind a proxy that uses credentials, you might want to set the
cors_supports_credentials configuration option to true to let in-browser clients log in.

For example:

web:
host: 0.0.0.0
cors: 'http://example.com'

Reverse Proxy Support

When the server is running behind a reverse proxy, you can tell the plugin to respect forwarded headers. Specifically,
this can help when you host the plugin at a base URL other than the root / or when you use the proxy to handle secure
connections. Enable the reverse_proxy configuration option if you do this.

Technically, this option lets the proxy provide X-Script-Name and X-Scheme HTTP headers to control the plu-
gin’s the SCRIPT_NAME and its wsgi.url_scheme parameter.

Here’s a sample Nginx configuration that serves the web plugin under the /beets directory:

location /beets {
proxy_pass http://127.0.0.1:8080;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Scheme $scheme;
proxy_set_header X-Script-Name /beets;

}

1.3. Plugins 97

http://flask.pocoo.org/
http://backbonejs.org
http://kolber.github.com/audiojs/
http://html5media.info/
http://mediaelementjs.com/
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://github.com/CoryDolphin/flask-cors
https://www.nginx.com

beets Documentation, Release 1.4.7

JSON API

GET /item/

Responds with a list of all tracks in the beets library.

{
"items": [
{

"id": 6,
"title": "A Song",
...

}, {
"id": 12,
"title": "Another Song",
...

}
...

]
}

GET /item/6

Looks for an item with id 6 in the beets library and responds with its JSON representation.

{
"id": 6,
"title": "A Song",
...

}

If there is no item with that id responds with a 404 status code.

GET /item/6,12,13

Response with a list of tracks with the ids 6, 12 and 13. The format of the response is the same as for GET /item/ . It
is not guaranteed that the response includes all the items requested. If a track is not found it is silently dropped from
the response.

GET /item/path/...

Look for an item at the given absolute path on the server. If it corresponds to a track, return the track in the same
format as /item/*.

If the server runs UNIX, you’ll need to include an extra leading slash: http://localhost:8337/item/path/
/Users/beets/Music/Foo/Bar/Baz.mp3

GET /item/query/querystring

Returns a list of tracks matching the query. The querystring must be a valid query as described in Queries.

98 Chapter 1. Contents

beets Documentation, Release 1.4.7

{
"results": [
{ "id" : 6, "title": "A Song" },
{ "id" : 12, "title": "Another Song" }

]
}

GET /item/6/file

Sends the media file for the track. If the item or its corresponding file do not exist a 404 status code is returned.

Albums

For albums, the following endpoints are provided:

• GET /album/

• GET /album/5

• GET /album/5,7

• GET /album/query/querystring

The interface and response format is similar to the item API, except replacing the encapsulation key "items" with
"albums" when requesting /album/ or /album/5,7. In addition we can request the cover art of an album with
GET /album/5/art. You can also add the ‘?expand’ flag to get the individual items of an album.

GET /stats

Responds with the number of tracks and albums in the database.

{
"items": 5,
"albums": 3

}

Zero Plugin

The zero plugin allows you to null fields in files’ metadata tags. Fields can be nulled unconditionally or conditioned
on a pattern match. For example, the plugin can strip useless comments like “ripped by MyGreatRipper.”

The plugin can work in one of two modes. The first mode, the default, is a blacklist, where you choose the tags you
want to remove. The second mode is a whitelist, where you instead specify the tags you want to keep.

To use the zero plugin, enable the plugin in your configuration (see Using Plugins).

Configuration

Make a zero: section in your configuration file. You can specify the fields to nullify and the conditions for nullifying
them:

• Set auto to yes to null fields automatically on import. Default: yes.

1.3. Plugins 99

beets Documentation, Release 1.4.7

• Set fields to a whitespace-separated list of fields to change. You can get the list of all available fields by
running beet fields. In addition, the images field allows you to remove any images embedded in the
media file.

• Set keep_fields to invert the logic of the plugin. Only these fields will be kept; other fields will be removed.
Remember to set only fields or keep_fields—not both!

• To conditionally filter a field, use field: [regexp, regexp] to specify regular expressions.

• By default this plugin only affects files’ tags ; the beets database is left unchanged. To update the tags in the
database, set the update_database option.

For example:

zero:
fields: month day genre comments
comments: [EAC, LAME, from.+collection, 'ripped by']
genre: [rnb, 'power metal']
update_database: true

If a custom pattern is not defined for a given field, the field will be nulled unconditionally.

Note that the plugin currently does not zero fields when importing “as-is”.

Manually Triggering Zero

You can also type beet zero [QUERY] to manually invoke the plugin on music in your library.

Preserving Album Art

If you use the keep_fields option, the plugin will remove embedded album art from files’ tags unless you tell it
not to. To keep the album art, include the special field images in the list. For example:

zero:
keep_fields: title artist album year track genre images

1.3.2 Autotagger Extensions

• Chromaprint/Acoustid Plugin: Use acoustic fingerprinting to identify audio files with missing or incorrect meta-
data.

• Discogs Plugin: Search for releases in the Discogs database.

• FromFilename Plugin: Guess metadata for untagged tracks from their filenames.

1.3.3 Metadata

• AcousticBrainz Submit Plugin: Analyse audio with the streaming_extractor_music program and submit the
metadata to the AcousticBrainz server

• AcousticBrainz Plugin: Fetch various AcousticBrainz metadata

• BPM Plugin: Measure tempo using keystrokes.

• Edit Plugin: Edit metadata from a text editor.

100 Chapter 1. Contents

http://www.discogs.com/
http://acousticbrainz.org/download

beets Documentation, Release 1.4.7

• EmbedArt Plugin: Embed album art images into files’ metadata.

• FetchArt Plugin: Fetch album cover art from various sources.

• FtInTitle Plugin: Move “featured” artists from the artist field to the title field.

• Key Finder Plugin: Use the KeyFinder program to detect the musical key from the audio.

• ImportAdded Plugin: Use file modification times for guessing the value for the added field in the database.

• LastGenre Plugin: Fetch genres based on Last.fm tags.

• LastImport Plugin: Collect play counts from Last.fm.

• Lyrics Plugin: Automatically fetch song lyrics.

• MBSync Plugin: Fetch updated metadata from MusicBrainz

• MetaSync Plugin: Fetch metadata from local or remote sources

• MPDStats Plugin: Connect to MPD and update the beets library with play statistics (last_played, play_count,
skip_count, rating).

• ReplayGain Plugin: Calculate volume normalization for players that support it.

• Scrub Plugin: Clean extraneous metadata from music files.

• Zero Plugin: Nullify fields by pattern or unconditionally.

1.3.4 Path Formats

• Bucket Plugin: Group your files into bucket directories that cover different field values ranges.

• Inline Plugin: Use Python snippets to customize path format strings.

• Rewrite Plugin: Substitute values in path formats.

• The Plugin: Move patterns in path formats (i.e., move “a” and “the” to the end).

1.3.5 Interoperability

• Bad Files Plugin: Check audio file integrity.

• EmbyUpdate Plugin: Automatically notifies Emby whenever the beets library changes.

• ImportFeeds Plugin: Keep track of imported files via .m3u playlist file(s) or symlinks.

• IPFS Plugin: Import libraries from friends and get albums from them via ipfs.

• KodiUpdate Plugin: Automatically notifies Kodi whenever the beets library changes.

• MPDUpdate Plugin: Automatically notifies MPD whenever the beets library changes.

• Play Plugin: Play beets queries in your music player.

• PlexUpdate Plugin: Automatically notifies Plex whenever the beets library changes.

• Smart Playlist Plugin: Generate smart playlists based on beets queries.

• SonosUpdate Plugin: Automatically notifies Sonos whenever the beets library changes.

• Thumbnails Plugin: Get thumbnails with the cover art on your album folders.

1.3. Plugins 101

http://www.ibrahimshaath.co.uk/keyfinder/
http://www.musicpd.org/
http://emby.media
http://kodi.tv
http://www.musicpd.org/
http://plex.tv
http://sonos.com

beets Documentation, Release 1.4.7

1.3.6 Miscellaneous

• BPD Plugin: A music player for your beets library that emulates MPD and is compatible with MPD clients.

• Convert Plugin: Transcode music and embed album art while exporting to a different directory.

• Duplicates Plugin: List duplicate tracks or albums.

• Export Plugin: Export data from queries to a format.

• FileFilter Plugin: Automatically skip files during the import process based on regular expressions.

• Fuzzy Search Plugin: Search albums and tracks with fuzzy string matching.

• Gmusic Plugin: Search and upload files to Google Play Music.

• Hook Plugin: Run a command when an event is emitted by beets.

• IHate Plugin: Automatically skip albums and tracks during the import process.

• Info Plugin: Print music files’ tags to the console.

• MusicBrainz Collection Plugin: Maintain your MusicBrainz collection list.

• MusicBrainz Submit Plugin: Print an album’s tracks in a MusicBrainz-friendly format.

• Missing Plugin: List missing tracks.

• Random Plugin: Randomly choose albums and tracks from your library.

• Spotify Plugin: Create Spotify playlists from the Beets library.

• Types Plugin: Declare types for flexible attributes.

• Web Plugin: An experimental Web-based GUI for beets.

1.3.7 Other Plugins

In addition to the plugins that come with beets, there are several plugins that are maintained by the beets community.
To use an external plugin, there are two options for installation:

• Make sure it’s in the Python path (known as sys.path to developers). This just means the plugin has to be
installed on your system (e.g., with a setup.py script or a command like pip or easy_install).

• Set the pluginpath config variable to point to the directory containing the plugin. (See Configuration.)

Once the plugin is installed, enable it by placing its name on the plugins line in your config file.

Here are a few of the plugins written by the beets community:

• beetFs is a FUSE filesystem for browsing the music in your beets library. (Might be out of date.)

• A cmus plugin integrates with the cmus console music player.

• beets-artistcountry fetches the artist’s country of origin from MusicBrainz.

• dsedivec has two plugins: edit and moveall.

• beet-amazon adds Amazon.com as a tagger data source.

• copyartifacts helps bring non-music files along during import.

• beets-check automatically checksums your files to detect corruption.

• beets-alternatives manages external files.

• beets-follow lets you check for new albums from artists you like.

102 Chapter 1. Contents

http://www.musicpd.org/
http://mpd.wikia.com/wiki/Clients
https://github.com/jbaiter/beetfs
https://github.com/coolkehon/beets/blob/master/beetsplug/cmus.py
http://cmus.sourceforge.net/
https://github.com/agrausem/beets-artistcountry
https://github.com/dsedivec/beets-plugins
https://github.com/jmwatte/beet-amazon
https://github.com/sbarakat/beets-copyartifacts
https://github.com/geigerzaehler/beets-check
https://github.com/geigerzaehler/beets-alternatives
https://github.com/nolsto/beets-follow

beets Documentation, Release 1.4.7

• beets-setlister generate playlists from the setlists of a given artist.

• beets-noimport adds and removes directories from the incremental import skip list.

• whatlastgenre fetches genres from various music sites.

• beets-usertag lets you use keywords to tag and organize your music.

• beets-popularity fetches popularity values from Spotify.

1.4 FAQ

Here are some answers to frequently-asked questions from IRC and elsewhere. Got a question that isn’t answered
here? Try IRC, the discussion board, or filing an issue in the bug tracker.

• How do I. . .

– . . . rename my files according to a new path format configuration?

– . . . find all the albums I imported “as-is”?

– . . . create “Disc N” directories for multi-disc albums?

– . . . import a multi-disc album?

– . . . enter a MusicBrainz ID?

– . . . upgrade to the latest version of beets?

– . . . run the latest source version of beets?

– . . . report a bug in beets?

– . . . find the configuration file (config.yaml)?

– . . . avoid using special characters in my filenames?

– . . . point beets at a new music directory?

• Why does beets. . .

– . . . complain that it can’t find a match?

– . . . appear to be missing some plugins?

– . . . ignore control-C during an import?

– . . . not change my ID3 tags?

– . . . complain that a file is “unreadable”?

– . . . seem to “hang” after an import finishes?

– . . . put a bunch of underscores in my filenames?

– . . . say “command not found”?

1.4. FAQ 103

https://github.com/tomjaspers/beets-setlister
https://gitlab.com/tiago.dias/beets-noimport
https://github.com/YetAnotherNerd/whatlastgenre/tree/master/plugin/beets
https://github.com/igordertigor/beets-usertag
https://github.com/abba23/beets-popularity
irc://irc.freenode.net/beets
http://discourse.beets.io

beets Documentation, Release 1.4.7

1.4.1 How do I. . .

. . . rename my files according to a new path format configuration?

Just run the move command. Use a query to rename a subset of your music or leave the query off to rename everything.

. . . find all the albums I imported “as-is”?

Enable the import log to automatically record whenever you skip an album or accept one “as-is”.

Alternatively, you can find all the albums in your library that are missing MBIDs using a command like this:

beet ls -a mb_albumid::^$

Assuming your files didn’t have MBIDs already, then this will roughly correspond to those albums that didn’t get
autotagged.

. . . create “Disc N” directories for multi-disc albums?

Use the Inline Plugin along with the %if{} function to accomplish this:

plugins: inline
paths:

default: $albumartist/$album%aunique{}/%if{$multidisc,Disc $disc/}$track $title
item_fields:

multidisc: 1 if disctotal > 1 else 0

. . . import a multi-disc album?

As of 1.0b11, beets tags multi-disc albums as a single unit. To get a good match, it needs to treat all of the album’s
parts together as a single release.

To help with this, the importer uses a simple heuristic to guess when a directory represents a multi-disc album that’s
been divided into multiple subdirectories. When it finds a situation like this, it collapses all of the items in the
subdirectories into a single release for tagging.

The heuristic works by looking at the names of directories. If multiple subdirectories of a common parent directory
follow the pattern “(title) disc (number) (. . .)” and the prefix (everything up to the number) is the same, the directories
are collapsed together. One of the key words “disc” or “CD” must be present to make this work.

If you have trouble tagging a multi-disc album, consider the --flat flag (which treats a whole tree as a single album)
or just putting all the tracks into a single directory to force them to be tagged together.

. . . enter a MusicBrainz ID?

An MBID looks like one of these:

• http://musicbrainz.org/release/ded77dcf-7279-457e-955d-625bd3801b87

• d569deba-8c6b-4d08-8c43-d0e5a1b8c7f3

Beets can recognize either the hex-with-dashes UUID-style string or the full URL that contains it (as of 1.0b11).

You can get these IDs by searching on the MusicBrainz web site and going to a release page (when tagging full
albums) or a recording page (when tagging singletons). Then, copy the URL of the page and paste it into beets.

104 Chapter 1. Contents

http://musicbrainz.org/

beets Documentation, Release 1.4.7

Note that MusicBrainz has both “releases” and “release groups,” which link together different versions of the same
album. Use release IDs here.

. . . upgrade to the latest version of beets?

Run a command like this:

pip install -U beets

The -U flag tells pip to upgrade beets to the latest version. If you want a specific version, you can specify with using
== like so:

pip install beets==1.0rc2

. . . run the latest source version of beets?

Beets sees regular releases (about every six weeks or so), but sometimes it’s helpful to run on the “bleeding edge”. To
run the latest source:

1. Uninstall beets. If you installed using pip, you can just run pip uninstall beets.

2. Install from source. There are a few easy ways to do this:

• Use pip to install the latest snapshot tarball: just type pip install https://github.com/
beetbox/beets/tarball/master.

• Grab the source using Git: git clone https://github.com/beetbox/beets.git. Then cd
beets and type python setup.py install.

• Use pip to install an “editable” version of beets based on an automatic source checkout. For example, run
pip install -e git+https://github.com/beetbox/beets#egg=beets to clone beets
and install it, allowing you to modify the source in-place to try out changes.

More details about the beets source are available on the developer documentation pages.

. . . report a bug in beets?

We use the issue tracker on GitHub. Enter a new issue there to report a bug. Please follow these guidelines when
reporting an issue:

• Most importantly: if beets is crashing, please include the traceback. Tracebacks can be more readable if you put
them in a pastebin (e.g., Gist or Hastebin), especially when communicating over IRC or email.

• Turn on beets’ debug output (using the -v option: for example, beet -v import ...) and include that
with your bug report. Look through this verbose output for any red flags that might point to the problem.

• If you can, try installing the latest beets source code to see if the bug is fixed in an unreleased version. You can
also look at the latest changelog entries for descriptions of the problem you’re seeing.

• Try to narrow your problem down to something specific. Is a particular plugin causing the problem? (You can
disable plugins to see whether the problem goes away.) Is a some music file or a single album leading to the
crash? (Try importing individual albums to determine which one is causing the problem.) Is some entry in your
configuration file causing it? Et cetera.

• If you do narrow the problem down to a particular audio file or album, include it with your bug report so the
developers can run tests.

If you’ve never reported a bug before, Mozilla has some well-written general guidelines for good bug reports.

1.4. FAQ 105

http://www.pip-installer.org
https://github.com/beetbox/beets/issues
https://github.com/beetbox/beets/issues/new
http://imgur.com/jacoj
https://gist.github.com/
http://hastebin.com/
http://www.mozilla.org/bugs/

beets Documentation, Release 1.4.7

. . . find the configuration file (config.yaml)?

You create this file yourself; beets just reads it. See Configuration.

. . . avoid using special characters in my filenames?

Use the %asciify{} function in your path formats. See Template Functions.

. . . point beets at a new music directory?

If you want to move your music from one directory to another, the best way is to let beets do it for you. First, edit your
configuration and set the directory setting to the new place. Then, type beet move to have beets move all your
files.

If you’ve already moved your music outside of beets, you have a few options:

• Move the music back (with an ordinary mv) and then use the above steps.

• Delete your database and re-create it from the new paths using beet import -AWC.

• Resort to manually modifying the SQLite database (not recommended).

1.4.2 Why does beets. . .

. . . complain that it can’t find a match?

There are a number of possibilities:

• First, make sure the album is in the MusicBrainz database. You can search on their site to make sure it’s
cataloged there. (If not, anyone can edit MusicBrainz—so consider adding the data yourself.)

• If the album in question is a multi-disc release, see the relevant FAQ answer above.

• The music files’ metadata might be insufficient. Try using the “enter search” or “enter ID” options to help the
matching process find the right MusicBrainz entry.

• If you have a lot of files that are missing metadata, consider using acoustic fingerprinting or filename-based
guesses for that music.

If none of these situations apply and you’re still having trouble tagging something, please file a bug report.

. . . appear to be missing some plugins?

Please make sure you’re using the latest version of beets—you might be using a version earlier than the one that
introduced the plugin. In many cases, the plugin may be introduced in beets “trunk” (the latest source version) and
might not be released yet. Take a look at the changelog to see which version added the plugin. (You can type beet
version to check which version of beets you have installed.)

If you want to live on the bleeding edge and use the latest source version of beets, you can check out the source (see
the relevant question).

To see the beets documentation for your version (and avoid confusion with new features in trunk), select your version
from the menu in the sidebar.

106 Chapter 1. Contents

http://musicbrainz.org/

beets Documentation, Release 1.4.7

. . . ignore control-C during an import?

Typing a ^C (control-C) control sequence will not halt beets’ multithreaded importer while it is waiting at a prompt
for user input. Instead, hit “return” (dismissing the prompt) after typing ^C. Alternatively, just type a “b” for “aBort”
at most prompts. Typing ^C will work if the importer interface is between prompts.

Also note that beets may take some time to quit after ^C is typed; it tries to clean up after itself briefly even when
canceled.

(For developers: this is because the UI thread is blocking on input and cannot be interrupted by the main thread,
which is trying to close all pipeline stages in the exception handler by setting a flag. There is no simple way to remedy
this.)

. . . not change my ID3 tags?

Beets writes ID3v2.4 tags by default. Some software, including Windows (i.e., Windows Explorer and Windows
Media Player) and id3lib/id3v2, don’t support v2.4 tags. When using 2.4-unaware software, it might look like the tags
are unmodified or missing completely.

To enable ID3v2.3 tags, enable the id3v23 config option.

. . . complain that a file is “unreadable”?

Beets will log a message like “unreadable file: /path/to/music.mp3” when it encounters files that look like music files
(according to their extension) but seem to be broken. Most of the time, this is because the file is corrupted. To check
whether the file is intact, try opening it in another media player (e.g., VLC) to see whether it can read the file. You can
also use specialized programs for checking file integrity—for example, type metaflac --list music.flac to
check FLAC files.

If beets still complains about a file that seems to be valid, file a bug and we’ll look into it. There’s always a possibility
that there’s a bug “upstream” in the Mutagen library used by beets, in which case we’ll forward the bug to that project’s
tracker.

. . . seem to “hang” after an import finishes?

Probably not. Beets uses a multithreaded importer that overlaps many different activities: it can prompt you for
decisions while, in the background, it talks to MusicBrainz and copies files. This means that, even after you make
your last decision, there may be a backlog of files to be copied into place and tags to be written. (Plugin tasks, like
looking up lyrics and genres, also run at this time.) If beets pauses after you see all the albums go by, have patience.

. . . put a bunch of underscores in my filenames?

When naming files, beets replaces certain characters to avoid causing problems on the filesystem. For example, leading
dots can confusingly hide files on Unix and several non-alphanumeric characters are forbidden on Windows.

The replace config option controls which replacements are made. By default, beets makes filenames safe for all
known platforms by replacing several patterns with underscores. This means that, even on Unix, filenames are made
Windows-safe so that network filesystems (such as SMB) can be used safely.

Most notably, Windows forbids trailing dots, so a folder called “M.I.A.” will be rewritten to “M.I.A_” by default.
Change the replace config if you don’t want this behavior and don’t need Windows-safe names.

1.4. FAQ 107

http://www.id3.org/id3v2.4.0-structure
http://id3v2.sourceforge.net/
http://www.videolan.org/vlc/index.html
https://github.com/beetbox/beets/issues/new
https://github.com/quodlibet/mutagen

beets Documentation, Release 1.4.7

. . . say “command not found”?

You need to put the beet program on your system’s search path. If you installed using pip, the command pip show
-f beets can show you where beet was placed on your system. If you need help extending your $PATH, try this
Super User answer.

1.5 For Developers

This section contains information for developers. Read on if you’re interested in hacking beets itself or creating plugins
for it.

1.5.1 Writing Plugins

A beets plugin is just a Python module inside the beetsplug namespace package. (Check out this Stack Over-
flow question about namespace packages if you haven’t heard of them.) So, to make one, create a directory called
beetsplug and put two files in it: one called __init__.py and one called myawesomeplugin.py (but don’t
actually call it that). Your directory structure should look like this:

beetsplug/
__init__.py
myawesomeplugin.py

Then, you’ll need to put this stuff in __init__.py to make beetsplug a namespace package:

from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

That’s all for __init__.py; you can can leave it alone. The meat of your plugin goes in myawesomeplugin.py.
There, you’ll have to import the beets.plugins module and define a subclass of the BeetsPlugin class found
therein. Here’s a skeleton of a plugin file:

from beets.plugins import BeetsPlugin

class MyPlugin(BeetsPlugin):
pass

Once you have your BeetsPlugin subclass, there’s a variety of things your plugin can do. (Read on!)

To use your new plugin, make sure your beetsplug directory is in the Python path (using PYTHONPATH or by
installing in a virtualenv, for example). Then, as described above, edit your config.yaml to include plugins:
myawesomeplugin (substituting the name of the Python module containing your plugin).

Add Commands to the CLI

Plugins can add new subcommands to the beet command-line interface. Define the plugin class’ commands()
method to return a list of Subcommand objects. (The Subcommand class is defined in the beets.ui module.)
Here’s an example plugin that adds a simple command:

from beets.plugins import BeetsPlugin
from beets.ui import Subcommand

my_super_command = Subcommand('super', help='do something super')

(continues on next page)

108 Chapter 1. Contents

http://superuser.com/a/284361/4569
http://superuser.com/a/284361/4569
http://stackoverflow.com/questions/1675734/how-do-i-create-a-namespace-package-in-python/1676069#1676069
http://stackoverflow.com/questions/1675734/how-do-i-create-a-namespace-package-in-python/1676069#1676069
http://pypi.python.org/pypi/virtualenv

beets Documentation, Release 1.4.7

(continued from previous page)

def say_hi(lib, opts, args):
print "Hello everybody! I'm a plugin!"

my_super_command.func = say_hi

class SuperPlug(BeetsPlugin):
def commands(self):

return [my_super_command]

To make a subcommand, invoke the constructor like so: Subcommand(name, parser, help, aliases).
The name parameter is the only required one and should just be the name of your command. parser can be an
OptionParser instance, but it defaults to an empty parser (you can extend it later). help is a description of your
command, and aliases is a list of shorthand versions of your command name.

You’ll need to add a function to your command by saying mycommand.func = myfunction. This function
should take the following parameters: lib (a beets Library object) and opts and args (command-line options
and arguments as returned by OptionParser.parse_args).

The function should use any of the utility functions defined in beets.ui. Try running pydoc beets.ui to see
what’s available.

You can add command-line options to your new command using the parser member of the Subcommand class,
which is a CommonOptionsParser instance. Just use it like you would a normal OptionParser in an inde-
pendent script. Note that it offers several methods to add common options: --album, --path and --format.
This feature is versatile and extensively documented, try pydoc beets.ui.CommonOptionsParser for more
information.

Listen for Events

Event handlers allow plugins to run code whenever something happens in beets’ operation. For instance, a plugin could
write a log message every time an album is successfully autotagged or update MPD’s index whenever the database is
changed.

You can “listen” for events using the BeetsPlugin.listen decorator. Here’s an example:

from beets.plugins import BeetsPlugin

class SomePlugin(BeetsPlugin):
pass

@SomePlugin.listen('pluginload')
def loaded():

print 'Plugin loaded!'

Pass the name of the event in question to the listen decorator.

Note that if you want to access an attribute of your plugin (e.g. config or log) you’ll have to define a method and
not a function. Here is the usual registration process in this case:

from beets.plugins import BeetsPlugin

class SomePlugin(BeetsPlugin):
def __init__(self):
super(SomePlugin, self).__init__()
self.register_listener('pluginload', self.loaded)

(continues on next page)

1.5. For Developers 109

http://docs.python.org/library/optparse.html
http://docs.python.org/library/optparse.html#parsing-arguments

beets Documentation, Release 1.4.7

(continued from previous page)

def loaded(self):
self._log.info('Plugin loaded!')

The events currently available are:

• pluginload: called after all the plugins have been loaded after the beet command starts

• import: called after a beet import command finishes (the lib keyword argument is a Library object;
paths is a list of paths (strings) that were imported)

• album_imported: called with an Album object every time the import command finishes adding an album to
the library. Parameters: lib, album

• item_copied: called with an Item object whenever its file is copied. Parameters: item, source path,
destination path

• item_imported: called with an Item object every time the importer adds a singleton to the library (not called
for full-album imports). Parameters: lib, item

• before_item_moved: called with an Item object immediately before its file is moved. Parameters: item,
source path, destination path

• item_moved: called with an Item object whenever its file is moved. Parameters: item, source path,
destination path

• item_linked: called with an Item object whenever a symlink is created for a file. Parameters: item, source
path, destination path

• item_hardlinked: called with an Item object whenever a hardlink is created for a file. Parameters: item,
source path, destination path

• item_removed: called with an Item object every time an item (singleton or album’s part) is removed from the
library (even when its file is not deleted from disk).

• write: called with an Item object, a path, and a tags dictionary just before a file’s metadata is written to disk
(i.e., just before the file on disk is opened). Event handlers may change the tags dictionary to customize the
tags that are written to the media file. Event handlers may also raise a library.FileOperationError
exception to abort the write operation. Beets will catch that exception, print an error message and continue.

• after_write: called with an Item object after a file’s metadata is written to disk (i.e., just after the file on disk is
closed).

• import_task_created: called immediately after an import task is initialized. Plugins can use this to, for example,
change imported files of a task before anything else happens. It’s also possible to replace the task with another
task by returning a list of tasks. This list can contain zero or more ImportTask‘s. Returning an empty list will
stop the task. Parameters: ‘‘task‘ (an ImportTask) and session (an ImportSession).

• import_task_start: called when before an import task begins processing. Parameters: task and session.

• import_task_apply: called after metadata changes have been applied in an import task. This is called on the
same thread as the UI, so use this sparingly and only for tasks that can be done quickly. For most plugins, an
import pipeline stage is a better choice (see Add Import Pipeline Stages). Parameters: task and session.

• import_task_choice: called after a decision has been made about an import task. This event can be used to
initiate further interaction with the user. Use task.choice_flag to determine or change the action to be
taken. Parameters: task and session.

• import_task_files: called after an import task finishes manipulating the filesystem (copying and moving files,
writing metadata tags). Parameters: task and session.

• library_opened: called after beets starts up and initializes the main Library object. Parameter: lib.

110 Chapter 1. Contents

beets Documentation, Release 1.4.7

• database_change: a modification has been made to the library database. The change might not be committed
yet. Parameters: lib and model.

• cli_exit: called just before the beet command-line program exits. Parameter: lib.

• import_begin: called just before a beet import session starts up. Parameter: session.

• trackinfo_received: called after metadata for a track item has been fetched from a data source, such as Mu-
sicBrainz. You can modify the tags that the rest of the pipeline sees on a beet import operation or during
later adjustments, such as mbsync. Slow handlers of the event can impact the operation, since the event is fired
for any fetched possible match before the user (or the autotagger machinery) gets to see the match. Parameter:
info.

• albuminfo_received: like trackinfo_received, the event indicates new metadata for album items. The parameter
is an AlbumInfo object instead of a TrackInfo. Parameter: info.

• before_choose_candidate: called before the user is prompted for a decision during a beet import interactive
session. Plugins can use this event for appending choices to the prompt by returning a list of PromptChoices.
Parameters: task and session.

The included mpdupdate plugin provides an example use case for event listeners.

Extend the Autotagger

Plugins can also enhance the functionality of the autotagger. For a comprehensive example, try looking at the chroma
plugin, which is included with beets.

A plugin can extend three parts of the autotagger’s process: the track distance function, the album distance function,
and the initial MusicBrainz search. The distance functions determine how “good” a match is at the track and album
levels; the initial search controls which candidates are presented to the matching algorithm. Plugins implement these
extensions by implementing four methods on the plugin class:

• track_distance(self, item, info): adds a component to the distance function (i.e., the similarity
metric) for individual tracks. item is the track to be matched (an Item object) and info is the TrackInfo object
that is proposed as a match. Should return a (dist, dist_max) pair of floats indicating the distance.

• album_distance(self, items, album_info, mapping): like the above, but compares a list
of items (representing an album) to an album-level MusicBrainz entry. items is a list of Item objects;
album_info is an AlbumInfo object; and mapping is a dictionary that maps Items to their corresponding
TrackInfo objects.

• candidates(self, items, artist, album, va_likely): given a list of items comprised by an
album to be matched, return a list of AlbumInfo objects for candidate albums to be compared and matched.

• item_candidates(self, item, artist, album): given a singleton item, return a list of
TrackInfo objects for candidate tracks to be compared and matched.

• album_for_id(self, album_id): given an ID from user input or an album’s tags, return a candidate
AlbumInfo object (or None).

• track_for_id(self, track_id): given an ID from user input or a file’s tags, return a candidate Track-
Info object (or None).

When implementing these functions, you may want to use the functions from the beets.autotag and beets.
autotag.mb modules, both of which have somewhat helpful docstrings.

Read Configuration Options

Plugins can configure themselves using the config.yaml file. You can read configuration values in two ways. The
first is to use self.config within your plugin class. This gives you a view onto the configuration values in a section with

1.5. For Developers 111

beets Documentation, Release 1.4.7

the same name as your plugin’s module. For example, if your plugin is in greatplugin.py, then self.config will
refer to options under the greatplugin: section of the config file.

For example, if you have a configuration value called “foo”, then users can put this in their config.yaml:

greatplugin:
foo: bar

To access this value, say self.config['foo'].get() at any point in your plugin’s code. The self.config object
is a view as defined by the Confit library.

If you want to access configuration values outside of your plugin’s section, import the config object from the beets
module. That is, just put from beets import config at the top of your plugin and access values from there.

If your plugin provides configuration values for sensitive data (e.g., passwords, API keys, . . .), you should add these
to the config so they can be redacted automatically when users dump their config. This can be done by setting each
value’s redact flag, like so:

self.config['password'].redact = True

Add Path Format Functions and Fields

Beets supports function calls in its path format syntax (see Path Formats). Beets includes a few built-in functions, but
plugins can register new functions by adding them to the template_funcs dictionary.

Here’s an example:

class MyPlugin(BeetsPlugin):
def __init__(self):

super(MyPlugin, self).__init__()
self.template_funcs['initial'] = _tmpl_initial

def _tmpl_initial(text):
if text:

return text[0].upper()
else:

return u''

This plugin provides a function %initial to path templates where %initial{$artist} expands to the artist’s
initial (its capitalized first character).

Plugins can also add template fields, which are computed values referenced as $name in templates. To add a new
field, add a function that takes an Item object to the template_fields dictionary on the plugin object. Here’s an
example that adds a $disc_and_track field:

class MyPlugin(BeetsPlugin):
def __init__(self):

super(MyPlugin, self).__init__()
self.template_fields['disc_and_track'] = _tmpl_disc_and_track

def _tmpl_disc_and_track(item):
"""Expand to the disc number and track number if this is a
multi-disc release. Otherwise, just expands to the track
number.
"""
if item.disctotal > 1:

return u'%02i.%02i' % (item.disc, item.track)

(continues on next page)

112 Chapter 1. Contents

http://confit.readthedocs.org/

beets Documentation, Release 1.4.7

(continued from previous page)

else:
return u'%02i' % (item.track)

With this plugin enabled, templates can reference $disc_and_track as they can any standard metadata field.

This field works for item templates. Similarly, you can register album template fields by adding a function accepting
an Album argument to the album_template_fields dict.

Extend MediaFile

MediaFile is the file tag abstraction layer that beets uses to make cross-format metadata manipulation simple. Plugins
can add fields to MediaFile to extend the kinds of metadata that they can easily manage.

The MediaFile class uses MediaField descriptors to provide access to file tags. Have a look at the beets.
mediafile source code to learn how to use this descriptor class. If you have created a descriptor you can add it
through your plugins add_media_field() method.

BeetsPlugin.add_media_field(name, descriptor)
Add a field that is synchronized between media files and items.

When a media field is added item.write() will set the name property of the item’s MediaFile to
item[name] and save the changes. Similarly item.read() will set item[name] to the value of the
name property of the media file.

descriptor must be an instance of mediafile.MediaField.

Here’s an example plugin that provides a meaningless new field “foo”:

class FooPlugin(BeetsPlugin):
def __init__(self):

field = mediafile.MediaField(
mediafile.MP3DescStorageStyle(u'foo'),
mediafile.StorageStyle(u'foo')

)
self.add_media_field('foo', field)

FooPlugin()
item = Item.from_path('/path/to/foo/tag.mp3')
assert item['foo'] == 'spam'

item['foo'] == 'ham'
item.write()
The "foo" tag of the file is now "ham"

Add Import Pipeline Stages

Many plugins need to add high-latency operations to the import workflow. For example, a plugin that fetches lyrics
from the Web would, ideally, not block the progress of the rest of the importer. Beets allows plugins to add stages to
the parallel import pipeline.

Each stage is run in its own thread. Plugin stages run after metadata changes have been applied to a unit of music
(album or track) and before file manipulation has occurred (copying and moving files, writing tags to disk). Multiple
stages run in parallel but each stage processes only one task at a time and each task is processed by only one stage at
a time.

1.5. For Developers 113

beets Documentation, Release 1.4.7

Plugins provide stages as functions that take two arguments: config and task, which are ImportSession and
ImportTask objects (both defined in beets.importer). Add such a function to the plugin’s import_stages
field to register it:

from beets.plugins import BeetsPlugin
class ExamplePlugin(BeetsPlugin):

def __init__(self):
super(ExamplePlugin, self).__init__()
self.import_stages = [self.stage]

def stage(self, session, task):
print('Importing something!')

It is also possible to request your function to run early in the pipeline by adding the function to the plugin’s
early_import_stages field instead:

self.early_import_stages = [self.stage]

Extend the Query Syntax

You can add new kinds of queries to beets’ query syntax indicated by a prefix. As an example, beets already supports
regular expression queries, which are indicated by a colon prefix—plugins can do the same.

To do so, define a subclass of the Query type from the beets.dbcore.query module. Then, in the queries
method of your plugin class, return a dictionary mapping prefix strings to query classes.

One simple kind of query you can extend is the FieldQuery, which implements string comparisons on fields.
To use it, create a subclass inheriting from that class and override the value_match class method. (Remember
the @classmethod decorator!) The following example plugin declares a query using the @ prefix to delimit ex-
act string matches. The plugin will be used if we issue a command like beet ls @something or beet ls
artist:@something:

from beets.plugins import BeetsPlugin
from beets.dbcore import FieldQuery

class ExactMatchQuery(FieldQuery):
@classmethod
def value_match(self, pattern, val):

return pattern == val

class ExactMatchPlugin(BeetsPlugin):
def queries(self):

return {
'@': ExactMatchQuery

}

Flexible Field Types

If your plugin uses flexible fields to store numbers or other non-string values, you can specify the types of those fields.
A rating plugin, for example, might want to declare that the rating field should have an integer type:

from beets.plugins import BeetsPlugin
from beets.dbcore import types

class RatingPlugin(BeetsPlugin):
item_types = {'rating': types.INTEGER}

(continues on next page)

114 Chapter 1. Contents

beets Documentation, Release 1.4.7

(continued from previous page)

@property
def album_types(self):

return {'rating': types.INTEGER}

A plugin may define two attributes: item_types and album_types. Each of those attributes is a dictionary mapping
a flexible field name to a type instance. You can find the built-in types in the beets.dbcore.types and beets.library
modules or implement your own type by inheriting from the Type class.

Specifying types has several advantages:

• Code that accesses the field like item['my_field'] gets the right type (instead of just a string).

• You can use advanced queries (like ranges) from the command line.

• User input for flexible fields may be validated and converted.

Logging

Each plugin object has a _log attribute, which is a Logger from the standard Python logging module. The logger is
set up to PEP 3101, str.format-style string formatting. So you can write logging calls like this:

self._log.debug(u'Processing {0.title} by {0.artist}', item)

When beets is in verbose mode, plugin messages are prefixed with the plugin name to make them easier to see.

Which messages will be logged depends on the logging level and the action performed:

• Inside import stages and event handlers, the default is WARNING messages and above.

• Everywhere else, the default is INFO or above.

The verbosity can be increased with --verbose (-v) flags: each flags lowers the level by a notch. That means
that, with a single -v flag, event handlers won’t have their DEBUG messages displayed, but command functions (for
example) will. With -vv on the command line, DEBUG messages will be displayed everywhere.

This addresses a common pattern where plugins need to use the same code for a command and an import stage, but the
command needs to print more messages than the import stage. (For example, you’ll want to log “found lyrics for this
song” when you’re run explicitly as a command, but you don’t want to noisily interrupt the importer interface when
running automatically.)

Append Prompt Choices

Plugins can also append choices to the prompt presented to the user during an import session.

To do so, add a listener for the before_choose_candidate event, and return a list of PromptChoices that
represent the additional choices that your plugin shall expose to the user:

from beets.plugins import BeetsPlugin
from beets.ui.commands import PromptChoice

class ExamplePlugin(BeetsPlugin):
def __init__(self):

super(ExamplePlugin, self).__init__()
self.register_listener('before_choose_candidate',

self.before_choose_candidate_event)

(continues on next page)

1.5. For Developers 115

https://docs.python.org/2/library/logging.html
https://www.python.org/dev/peps/pep-3101/

beets Documentation, Release 1.4.7

(continued from previous page)

def before_choose_candidate_event(self, session, task):
return [PromptChoice('p', 'Print foo', self.foo),

PromptChoice('d', 'Do bar', self.bar)]

def foo(self, session, task):
print('User has chosen "Print foo"!')

def bar(self, session, task):
print('User has chosen "Do bar"!')

The previous example modifies the standard prompt:

selection (default 1), Skip, Use as-is, as Tracks, Group albums,
Enter search, enter Id, aBort?

by appending two additional options (Print foo and Do bar):

selection (default 1), Skip, Use as-is, as Tracks, Group albums,
Enter search, enter Id, aBort, Print foo, Do bar?

If the user selects a choice, the callback attribute of the corresponding PromptChoice will be called. It is
the responsibility of the plugin to check for the status of the import session and decide the choices to be appended:
for example, if a particular choice should only be presented if the album has no candidates, the relevant checks
against task.candidates should be performed inside the plugin’s before_choose_candidate_event
accordingly.

Please make sure that the short letter for each of the choices provided by the plugin is not already in use: the importer
will emit a warning and discard all but one of the choices using the same letter, giving priority to the core importer
prompt choices. As a reference, the following characters are used by the choices on the core importer prompt, and
hence should not be used: a, s, u, t, g, e, i, b.

Additionally, the callback function can optionally specify the next action to be performed by returning a importer.
action value. It may also return a autotag.Proposal value to update the set of current proposals to be consid-
ered.

1.5.2 API Documentation

This page describes the internal API of beets’ core. It’s a work in progress—since beets is an application first and a
library second, its API has been mainly undocumented until recently. Please file bugs if you run across incomplete or
incorrect docs here.

The Library object is the central repository for data in beets. It represents a database containing songs, which are
Item instances, and groups of items, which are Album instances.

The Library Class

class beets.library.Library(path, directory[, path_formats[, replacements]])
A database of music containing songs and albums.

items(query=None, sort=None)
Get Item objects matching the query.

albums(query=None, sort=None)
Get Album objects matching the query.

116 Chapter 1. Contents

beets Documentation, Release 1.4.7

get_item(id)
Fetch an Item by its ID. Returns None if no match is found.

get_album(item_or_id)
Given an album ID or an item associated with an album, return an Album object for the album. If no such
album exists, returns None.

add(obj)
Add the Item or Album object to the library database. Return the object’s new id.

add_album(items)
Create a new album consisting of a list of items.

The items are added to the database if they don’t yet have an ID. Return a new Album object. The list
items must not be empty.

transaction()
Get a Transaction object for interacting directly with the underlying SQLite database.

Transactions

The Library class provides the basic methods necessary to access and manipulate its contents. To perform more
complicated operations atomically, or to interact directly with the underlying SQLite database, you must use a trans-
action. For example:

lib = Library()
with lib.transaction() as tx:

items = lib.items(query)
lib.add_album(list(items))

class beets.dbcore.db.Transaction(db)
A context manager for safe, concurrent access to the database. All SQL commands should be executed through
a transaction.

mutate(statement, subvals=())
Execute an SQL statement with substitution values and return the row ID of the last affected row.

query(statement, subvals=())
Execute an SQL statement with substitution values and return a list of rows from the database.

script(statements)
Execute a string containing multiple SQL statements.

Model Classes

The two model entities in beets libraries, Item and Album, share a base class, Model, that provides common
functionality and ORM-like abstraction.

The fields model classes can be accessed using attributes (dots, as in item.artist) or items (brackets, as in
item['artist']). The Model base class provides some methods that resemble dict objects.

Model base

class beets.dbcore.Model(db=None, **values)
An abstract object representing an object in the database. Model objects act like dictionaries (i.e., the allow

1.5. For Developers 117

beets Documentation, Release 1.4.7

subscript access like obj['field']). The same field set is available via attribute access as a shortcut (i.e.,
obj.field). Three kinds of attributes are available:

• Fixed attributes come from a predetermined list of field names. These fields correspond to SQLite table
columns and are thus fast to read, write, and query.

• Flexible attributes are free-form and do not need to be listed ahead of time.

• Computed attributes are read-only fields computed by a getter function provided by a plugin.

Access to all three field types is uniform: obj.field works the same regardless of whether field is fixed,
flexible, or computed.

Model objects can optionally be associated with a Library object, in which case they can be loaded and stored
from the database. Dirty flags are used to track which fields need to be stored.

add(db=None)
Add the object to the library database. This object must be associated with a database; you can provide
one via the db parameter or use the currently associated database.

The object’s id and added fields are set along with any current field values.

classmethod all_keys()
Get a list of available keys for objects of this type. Includes fixed and computed fields.

clear_dirty()
Mark all fields as clean (i.e., not needing to be stored to the database).

copy()
Create a copy of the model object.

The field values and other state is duplicated, but the new copy remains associated with the same database
as the old object. (A simple copy.deepcopy will not work because it would try to duplicate the SQLite
connection.)

evaluate_template(template, for_path=False)
Evaluate a template (a string or a Template object) using the object’s fields. If for_path is true, then no new
path separators will be added to the template.

formatted(for_path=False)
Get a mapping containing all values on this object formatted as human-readable unicode strings.

get(key, default=None)
Get the value for a given key or default if it does not exist.

items()
Iterate over (key, value) pairs that this object contains. Computed fields are not included.

keys(computed=False)
Get a list of available field names for this object. The computed parameter controls whether computed
(plugin-provided) fields are included in the key list.

load()
Refresh the object’s metadata from the library database.

remove()
Remove the object’s associated rows from the database.

set_parse(key, string)
Set the object’s key to a value represented by a string.

store(fields=None)
Save the object’s metadata into the library database. :param fields: the fields to be stored. If not specified,
all fields will be.

118 Chapter 1. Contents

beets Documentation, Release 1.4.7

update(values)
Assign all values in the given dict.

Item

class beets.library.Item(db=None, **values)

clear()
Set all key/value pairs to None.

current_mtime()
Returns the current mtime of the file, rounded to the nearest integer.

destination(fragment=False, basedir=None, platform=None, path_formats=None)
Returns the path in the library directory designated for the item (i.e., where the file ought to be). fragment
makes this method return just the path fragment underneath the root library directory; the path is also
returned as Unicode instead of encoded as a bytestring. basedir can override the library’s base directory
for the destination.

classmethod from_path(path)
Creates a new item from the media file at the specified path.

get_album()
Get the Album object that this item belongs to, if any, or None if the item is a singleton or is not associated
with a library.

move(operation=<MoveOperation.MOVE: 0>, basedir=None, with_album=True, store=True)
Move the item to its designated location within the library directory (provided by destination()). Subdirec-
tories are created as needed. If the operation succeeds, the item’s path field is updated to reflect the new
location.

Instead of moving the item it can also be copied, linked or hardlinked depending on operation which
should be an instance of util.MoveOperation.

basedir overrides the library base directory for the destination.

If the item is in an album and with_album is True, the album is given an opportunity to move its art.

By default, the item is stored to the database if it is in the database, so any dirty fields prior to the move()
call will be written as a side effect. If store is False however, the item won’t be stored and you’ll have to
manually store it after invoking this method.

move_file(dest, operation=<MoveOperation.MOVE: 0>)
Move, copy, link or hardlink the item’s depending on operation, updating the path value if the move
succeeds.

If a file exists at dest, then it is slightly modified to be unique.

operation should be an instance of util.MoveOperation.

read(read_path=None)
Read the metadata from the associated file.

If read_path is specified, read metadata from that file instead. Updates all the properties in _media_fields
from the media file.

Raises a ReadError if the file could not be read.

1.5. For Developers 119

beets Documentation, Release 1.4.7

remove(delete=False, with_album=True)
Removes the item. If delete, then the associated file is removed from disk. If with_album, then the item’s
album (if any) is removed if it the item was the last in the album.

try_filesize()
Get the size of the underlying file in bytes.

If the file is missing, return 0 (and log a warning).

try_sync(write, move, with_album=True)
Synchronize the item with the database and, possibly, updates its tags on disk and its path (by moving the
file).

write indicates whether to write new tags into the file. Similarly, move controls whether the path should be
updated. In the latter case, files are only moved when they are inside their library’s directory (if any).

Similar to calling write(), move(), and store() (conditionally).

try_write(path=None, tags=None)
Calls write() but catches and logs FileOperationError exceptions.

Returns False an exception was caught and True otherwise.

update(values)
Set all key/value pairs in the mapping. If mtime is specified, it is not reset (as it might otherwise be).

write(path=None, tags=None)
Write the item’s metadata to a media file.

All fields in _media_fields are written to disk according to the values on this object.

path is the path of the mediafile to write the data to. It defaults to the item’s path.

tags is a dictionary of additional metadata the should be written to the file. (These tags need not be in
_media_fields.)

Can raise either a ReadError or a WriteError.

Album

class beets.library.Album(db=None, **values)
Provides access to information about albums stored in a library. Reflects the library’s “albums” table, including
album art.

art_destination(image, item_dir=None)
Returns a path to the destination for the album art image for the album. image is the path of the image that
will be moved there (used for its extension).

The path construction uses the existing path of the album’s items, so the album must contain at least one
item or item_dir must be provided.

item_dir()
Returns the directory containing the album’s first item, provided that such an item exists.

item_keys = ['added', 'albumartist', 'albumartist_sort', 'albumartist_credit', 'album', 'genre', 'year', 'month', 'day', 'disctotal', 'comp', 'mb_albumid', 'mb_albumartistid', 'albumtype', 'label', 'mb_releasegroupid', 'asin', 'catalognum', 'script', 'language', 'country', 'albumstatus', 'albumdisambig', 'rg_album_gain', 'rg_album_peak', 'r128_album_gain', 'original_year', 'original_month', 'original_day']
List of keys that are set on an album’s items.

items()
Returns an iterable over the items associated with this album.

120 Chapter 1. Contents

beets Documentation, Release 1.4.7

move(operation=<MoveOperation.MOVE: 0>, basedir=None, store=True)
Move, copy, link or hardlink (depending on operation) all items to their destination. Any album art moves
along with them.

basedir overrides the library base directory for the destination.

operation should be an instance of util.MoveOperation.

By default, the album is stored to the database, persisting any modifications to its metadata. If store is
False however, the album is not stored automatically, and you’ll have to manually store it after invoking
this method.

move_art(operation=<MoveOperation.MOVE: 0>)
Move, copy, link or hardlink (depending on operation) any existing album art so that it remains in the same
directory as the items.

operation should be an instance of util.MoveOperation.

remove(delete=False, with_items=True)
Removes this album and all its associated items from the library. If delete, then the items’ files are also
deleted from disk, along with any album art. The directories containing the album are also removed
(recursively) if empty. Set with_items to False to avoid removing the album’s items.

set_art(path, copy=True)
Sets the album’s cover art to the image at the given path. The image is copied (or moved) into place,
replacing any existing art.

Sends an ‘art_set’ event with self as the sole argument.

store(fields=None)
Update the database with the album information. The album’s tracks are also updated. :param fields: The
fields to be stored. If not specified, all fields will be.

try_sync(write, move)
Synchronize the album and its items with the database. Optionally, also write any new tags into the files
and update their paths.

write indicates whether to write tags to the item files, and move controls whether files (both audio and
album art) are moved.

1.5.3 MediaFile

class beets.mediafile.MediaFile(path, id3v23=False)
Represents a multimedia file on disk and provides access to its metadata.

__init__(path, id3v23=False)
Constructs a new MediaFile reflecting the file at path. May throw UnreadableFileError.

By default, MP3 files are saved with ID3v2.4 tags. You can use the older ID3v2.3 standard by specifying
the id3v23 option.

classmethod fields()
Get the names of all writable properties that reflect metadata tags (i.e., those that are instances of
MediaField).

classmethod readable_fields()
Get all metadata fields: the writable ones from fields() and also other audio properties.

save()
Write the object’s tags back to the file. May throw UnreadableFileError.

1.5. For Developers 121

beets Documentation, Release 1.4.7

update(dict)
Set all field values from a dictionary.

For any key in dict that is also a field to store tags the method retrieves the corresponding value from dict
and updates the MediaFile. If a key has the value None, the corresponding property is deleted from the
MediaFile.

class beets.mediafile.MediaField(*styles, **kwargs)
A descriptor providing access to a particular (abstract) metadata field.

__init__(*styles, **kwargs)
Creates a new MediaField.

Parameters

• styles – StorageStyle instances that describe the strategy for reading and writing the
field in particular formats. There must be at least one style for each possible file format.

• out_type – the type of the value that should be returned when getting this property.

class beets.mediafile.StorageStyle(key, as_type=<type ’unicode’>, suffix=None,
float_places=2)

A strategy for storing a value for a certain tag format (or set of tag formats). This basic StorageStyle describes
simple 1:1 mapping from raw values to keys in a Mutagen file object; subclasses describe more sophisticated
translations or format-specific access strategies.

MediaFile uses a StorageStyle via three methods: get(), set(), and delete(). It passes a Mutagen file
object to each.

Internally, the StorageStyle implements get() and set() using two steps that may be overridden by subtypes.
To get a value, the StorageStyle first calls fetch() to retrieve the value corresponding to a key and then
deserialize() to convert the raw Mutagen value to a consumable Python value. Similarly, to set a field,
we call serialize() to encode the value and then store() to assign the result into the Mutagen object.

Each StorageStyle type has a class-level formats attribute that is a list of strings indicating the formats that the
style applies to. MediaFile only uses StorageStyles that apply to the correct type for a given audio file.

delete(mutagen_file)
Remove the tag from the file.

deserialize(mutagen_value)
Given a raw value stored on a Mutagen object, decode and return the represented value.

fetch(mutagen_file)
Retrieve the raw value of for this tag from the Mutagen file object.

formats = ['FLAC', 'OggOpus', 'OggTheora', 'OggSpeex', 'OggVorbis', 'OggFlac', 'APEv2File', 'WavPack', 'Musepack', 'MonkeysAudio']
List of mutagen classes the StorageStyle can handle.

get(mutagen_file)
Get the value for the field using this style.

serialize(value)
Convert the external Python value to a type that is suitable for storing in a Mutagen file object.

set(mutagen_file, value)
Assign the value for the field using this style.

store(mutagen_file, value)
Store a serialized value in the Mutagen file object.

122 Chapter 1. Contents

beets Documentation, Release 1.4.7

1.6 Changelog

1.6.1 1.4.7 (May 29, 2018)

This new release includes lots of new features in the importer and the metadata source backends that it uses. We’ve
changed how the beets importer handles non-audio tracks listed in metadata sources like MusicBrainz:

• The importer now ignores non-audio tracks (namely, data and video tracks) listed in MusicBrainz. Also, a new
option, ignore_video_tracks, lets you return to the old behavior and include these video tracks. #1210

• A new importer option, ignored_media, can let you skip certain media formats. #2688

There are other subtle improvements to metadata handling in the importer:

• In the MusicBrainz backend, beets now imports the musicbrainz_releasetrackid field. This is a first
step toward #406. Thanks to Rawrmonkeys.

• A new importer configuration option, artist_credit, will tell beets to prefer the artist credit over the artist when
autotagging. #1249

And there are even more new features:

• ReplayGain Plugin: The beet replaygain command now has --force, --write and --nowrite
options. #2778

• A new importer configuration option, incremental_skip_later, lets you avoid recording skipped directories to the
list of “processed” directories in incremental mode. This way, you can revisit them later with another import.
Thanks to sekjun9878. #2773

• FetchArt Plugin: The configuration options now support finer-grained control via the sources option. You
can now specify the search order for different matching strategies within different backends.

• Web Plugin: A new cors_supports_credentials configuration option lets in-browser clients communi-
cate with the server even when it is protected by an authorization mechanism (a proxy with HTTP authentication
enabled, for example).

• A new SonosUpdate Plugin plugin automatically notifies Sonos controllers to update the music library when the
beets library changes. Thanks to cgtobi.

• Discogs Plugin: The plugin now stores master release IDs into mb_releasegroupid. It also “simulates”
track IDs using the release ID and the track list position. Thanks to dbogdanov. #2336

• Discogs Plugin: Fetch the original year from master releases. #1122

There are lots and lots of fixes:

• ReplayGain Plugin: Fix a corner-case with the bs1770gain backend where ReplayGain values were assigned
to the wrong files. The plugin now requires version 0.4.6 or later of the bs1770gain tool. #2777

• Lyrics Plugin: The plugin no longer crashes in the Genius source when BeautifulSoup is not found. Instead, it
just logs a message and disables the source. #2911

• Lyrics Plugin: Handle network and API errors when communicating with Genius. #2771

• Lyrics Plugin: The lyrics command previously wrote ReST files by default, even when you didn’t ask for
them. This default has been fixed.

• Lyrics Plugin: When writing ReST files, the lyrics command now groups lyrics by the albumartist field,
rather than artist. #2924

• Plugins can now see updated import task state, such as when rejecting the initial candidates and finding new
ones via a manual search. Notably, this means that the importer prompt options that the Edit Plugin provides
show up more reliably after doing a secondary import search. #2441 #2731

1.6. Changelog 123

https://github.com/beetbox/beets/issues/1210
https://github.com/beetbox/beets/issues/2688
https://github.com/beetbox/beets/issues/406
https://github.com/Rawrmonkeys
https://github.com/beetbox/beets/issues/1249
https://github.com/beetbox/beets/issues/2778
https://github.com/sekjun9878
https://github.com/beetbox/beets/issues/2773
https://github.com/cgtobi
https://github.com/dbogdanov
https://github.com/beetbox/beets/issues/2336
https://github.com/beetbox/beets/issues/1122
https://github.com/beetbox/beets/issues/2777
https://github.com/beetbox/beets/issues/2911
https://github.com/beetbox/beets/issues/2771
https://github.com/beetbox/beets/issues/2924
https://github.com/beetbox/beets/issues/2441
https://github.com/beetbox/beets/issues/2731

beets Documentation, Release 1.4.7

• ImportAdded Plugin: Fix a crash on non-autotagged imports. Thanks to m42i. #2601 #1918

• PlexUpdate Plugin: The Plex token is now redacted in configuration output. Thanks to Kovrinic. #2804

• Avoid a crash when importing a non-ASCII filename when using an ASCII locale on Unix under Python 3.
#2793 #2803

• Fix a problem caused by time zone misalignment that could make date queries fail to match certain dates that
are near the edges of a range. For example, querying for dates within a certain month would fail to match dates
within hours of the end of that month. #2652

• Convert Plugin: The plugin now runs before other plugin-provided import stages, which addresses an issue
with generating ReplayGain data incompatible between the source and target file formats. Thanks to autrimpo.
#2814

• FtInTitle Plugin: The drop config option had no effect; it now does what it says it should do. #2817

• Importing a release with multiple release events now selects the event based on the order of your preferred
countries rather than the order of release events in MusicBrainz. #2816

• Web Plugin: The time display in the web interface would incorrectly jump at the 30-second mark of every
minute. Now, it correctly changes over at zero seconds. #2822

• Web Plugin: Fetching album art now works (instead of throwing an exception) under Python 3. Additionally,
the server will now return a 404 response when the album ID is unknown (instead of throwing an exception and
producing a 500 response). #2823

• Web Plugin: Fix an exception on Python 3 for filenames with non-Latin1 characters. (These characters are now
converted to their ASCII equivalents.) #2815

• Partially fix bash completion for subcommand names that contain hyphens. Thanks to jhermann. #2836 #2837

• ReplayGain Plugin: Really fix album gain calculation using the GStreamer backend. #2846

• Avoid an error when doing a “no-op” move on non-existent files (i.e., moving a file onto itself). #2863

• Discogs Plugin: Fix the medium and medium_index values, which were occasionally incorrect for releases
with two-sided mediums such as vinyl. Also fix the medium_total value, which now contains total number
of tracks on the medium to which a track belongs, not the total number of different mediums present on the
release. Thanks to dbogdanov. #2887

• The importer now supports audio files contained in data tracks when they are listed in MusicBrainz: the corre-
sponding audio tracks are now merged into the main track list. Thanks to jdetrey. #1638

• Key Finder Plugin: Avoid a crash when trying to process unmatched tracks. #2537

• MBSync Plugin: Support MusicBrainz recording ID changes, relying on release track IDs instead. Thanks to
jdetrey. #1234

• MBSync Plugin: We can now successfully update albums even when the first track has a missing MusicBrainz
recording ID. #2920

There are a couple of changes for developers:

• Plugins can now run their import stages early, before other plugins. Use the early_import_stages list
instead of plain import_stages to request this behavior. #2814

• We again properly send albuminfo_received and trackinfo_received in all cases, most notably
when using the mbsync plugin. This was a regression since version 1.4.1. #2921

124 Chapter 1. Contents

https://github.com/m42i
https://github.com/beetbox/beets/issues/2601
https://github.com/beetbox/beets/issues/1918
https://github.com/Kovrinic
https://github.com/beetbox/beets/issues/2804
https://github.com/beetbox/beets/issues/2793
https://github.com/beetbox/beets/issues/2803
https://github.com/beetbox/beets/issues/2652
https://github.com/autrimpo
https://github.com/beetbox/beets/issues/2814
https://github.com/beetbox/beets/issues/2817
https://github.com/beetbox/beets/issues/2816
https://github.com/beetbox/beets/issues/2822
https://github.com/beetbox/beets/issues/2823
https://github.com/beetbox/beets/issues/2815
https://github.com/jhermann
https://github.com/beetbox/beets/issues/2836
https://github.com/beetbox/beets/issues/2837
https://github.com/beetbox/beets/issues/2846
https://github.com/beetbox/beets/issues/2863
https://github.com/dbogdanov
https://github.com/beetbox/beets/issues/2887
https://github.com/jdetrey
https://github.com/beetbox/beets/issues/1638
https://github.com/beetbox/beets/issues/2537
https://github.com/jdetrey
https://github.com/beetbox/beets/issues/1234
https://github.com/beetbox/beets/issues/2920
https://github.com/beetbox/beets/issues/2814
https://github.com/beetbox/beets/issues/2921

beets Documentation, Release 1.4.7

1.6.2 1.4.6 (December 21, 2017)

The highlight of this release is “album merging,” an oft-requested option in the importer to add new tracks to an
existing album you already have in your library. This way, you no longer need to resort to removing the partial album
from your library, combining the files manually, and importing again.

Here are the larger new features in this release:

• When the importer finds duplicate albums, you can now merge all the tracks—old and new—together and try
importing them as a single, combined album. Thanks to udiboy1209. #112 #2725

• Lyrics Plugin: The plugin can now produce reStructuredText files for beautiful, readable books of lyrics. Thanks
to anarcat. #2628

• A new from_scratch configuration option makes the importer remove old metadata before applying new meta-
data. This new feature complements the zero and scrub plugins but is slightly different: beets clears out all
the old tags it knows about and only keeps the new data it gets from the remote metadata source. Thanks to
tummychow. #934 #2755

There are also somewhat littler, but still great, new features:

• Convert Plugin: A new no_convert option lets you skip transcoding items matching a query. Instead, the
files are just copied as-is. Thanks to Stunner. #2732 #2751

• FetchArt Plugin: A new quiet switch that only prints out messages when album art is missing. Thanks to euri10.
#2683

• MusicBrainz Collection Plugin: You can configure a custom MusicBrainz collection via the new collection
configuration option. #2685

• MusicBrainz Collection Plugin: The collection update command can now remove albums from collections that
are longer in the beets library.

• FetchArt Plugin: The clearart command now asks for confirmation before touching your files. Thanks to
konman2. #2708 #2427

• MPDStats Plugin: The plugin now correctly updates song statistics when MPD switches from a song to a stream
and when it plays the same song multiple times consecutively. #2707

• AcousticBrainz Plugin: The plugin can now be configured to write only a specific list of tags. Thanks to woparry.

There are lots and lots of bug fixes:

• Hook Plugin: Fixed a problem where accessing non-string properties of item or album (e.g., item.track)
would cause a crash. Thanks to broddo. #2740

• Play Plugin: When relative_to is set, the plugin correctly emits relative paths even when querying for
albums rather than tracks. Thanks to j000. #2702

• We suppress a spurious Python warning about a BrokenPipeError being ignored. This was an issue when
using beets in simple shell scripts. Thanks to Azphreal. #2622 #2631

• ReplayGain Plugin: Fix a regression in the previous release related to the new R128 tags. #2615 #2623

• Lyrics Plugin: The MusixMatch backend now detects and warns when the server has blocked the client. Thanks
to anarcat. #2634 #2632

• ImportFeeds Plugin: Fix an error on Python 3 in certain configurations. Thanks to djl. #2467 #2658

• Edit Plugin: Fix a bug when editing items during a re-import with the -L flag. Previously, diffs against against
unrelated items could be shown or beets could crash. #2659

• KodiUpdate Plugin: Fix the server URL and add better error reporting. #2662

1.6. Changelog 125

https://github.com/udiboy1209
https://github.com/beetbox/beets/issues/112
https://github.com/beetbox/beets/issues/2725
https://github.com/anarcat
https://github.com/beetbox/beets/issues/2628
https://github.com/tummychow
https://github.com/beetbox/beets/issues/934
https://github.com/beetbox/beets/issues/2755
https://github.com/Stunner
https://github.com/beetbox/beets/issues/2732
https://github.com/beetbox/beets/issues/2751
https://github.com/euri10
https://github.com/beetbox/beets/issues/2683
https://github.com/beetbox/beets/issues/2685
https://github.com/konman2
https://github.com/beetbox/beets/issues/2708
https://github.com/beetbox/beets/issues/2427
https://github.com/beetbox/beets/issues/2707
https://github.com/woparry
https://github.com/broddo
https://github.com/beetbox/beets/issues/2740
https://github.com/j000
https://github.com/beetbox/beets/issues/2702
https://github.com/Azphreal
https://github.com/beetbox/beets/issues/2622
https://github.com/beetbox/beets/issues/2631
https://github.com/beetbox/beets/issues/2615
https://github.com/beetbox/beets/issues/2623
https://github.com/anarcat
https://github.com/beetbox/beets/issues/2634
https://github.com/beetbox/beets/issues/2632
https://github.com/djl
https://github.com/beetbox/beets/issues/2467
https://github.com/beetbox/beets/issues/2658
https://github.com/beetbox/beets/issues/2659
https://github.com/beetbox/beets/issues/2662

beets Documentation, Release 1.4.7

• Fixed a problem where “no-op” modifications would reset files’ mtimes, resulting in unnecessary writes. This
most prominently affected the Edit Plugin when saving the text file without making changes to some music.
#2667

• Chromaprint/Acoustid Plugin: Fix a crash when running the submit command on Python 3 on Windows with
non-ASCII filenames. #2671

• AcousticBrainz Submit Plugin: Fix an occasional crash on Python 3 when the AB analysis tool produced non-
ASCII metadata. #2673

• Duplicates Plugin: Use the default tiebreak for items or albums when the configuration only specifies a tiebreak
for the other kind of entity. Thanks to cgevans. #2758

• Duplicates Plugin: Fix the --key command line option, which was ignored.

• ReplayGain Plugin: Fix album ReplayGain calculation with the GStreamer backend. #2636

• Scrub Plugin: Handle errors when manipulating files using newer versions of Mutagen. #2716

• FetchArt Plugin: The plugin no longer gets skipped during import when the “Edit Candidates” option is used
from the Edit Plugin. #2734

• Fix a crash when numeric metadata fields contain just a minus or plus sign with no following numbers. Thanks
to eigengrau. #2741

• FromFilename Plugin: Recognize file names that contain only a track number, such as 01.mp3. Also, the plugin
now allows underscores as a separator between fields. Thanks to Vrihub. #2738 #2759

• Fixed an issue where images would be resized according to their longest edge, instead of their width, when
using the maxwidth config option in the FetchArt Plugin and EmbedArt Plugin. Thanks to sekjun9878. #2729

There are some changes for developers:

• “Fixed fields” in Album and Item objects are now more strict about translating missing values into type-specific
null-like values. This should help in cases where a string field is unexpectedly None sometimes instead of just
showing up as an empty string. #2605

• Refactored the move functions the beets.library module and the manipulate_files function in beets.importer to
use a single parameter describing the file operation instead of multiple Boolean flags. There is a new numerated
type describing how to move, copy, or link files. #2682

1.6.3 1.4.5 (June 20, 2017)

Version 1.4.5 adds some oft-requested features. When you’re importing files, you can now manually set fields on the
new music. Date queries have gotten much more powerful: you can write precise queries down to the second, and we
now have relative queries like -1w, which means one week ago.

Here are the new features:

• You can now set fields to certain values during import, using either a --set field=value command-line
flag or a new set_fields configuration option under the importer section. Thanks to bartkl. #1881 #2581

• Date queries can now include times, so you can filter your music down to the second. Thanks to discopatrick.
#2506 #2528

• Date queries can also be relative. You can say added:-1w.. to match music added in the last week, for
example. Thanks to euri10. #2598

• A new Gmusic Plugin lets you interact with your Google Play Music library. Thanks to tigranl. #2553 #2586

• ReplayGain Plugin: We now keep R128 data in separate tags from classic ReplayGain data for formats that need
it (namely, Ogg Opus). A new r128 configuration option enables this behavior for specific formats. Thanks to
autrimpo. #2557 #2560

126 Chapter 1. Contents

https://github.com/beetbox/beets/issues/2667
https://github.com/beetbox/beets/issues/2671
https://github.com/beetbox/beets/issues/2673
https://github.com/cgevans
https://github.com/beetbox/beets/issues/2758
https://github.com/beetbox/beets/issues/2636
https://github.com/beetbox/beets/issues/2716
https://github.com/beetbox/beets/issues/2734
https://github.com/eigengrau
https://github.com/beetbox/beets/issues/2741
https://github.com/Vrihub
https://github.com/beetbox/beets/issues/2738
https://github.com/beetbox/beets/issues/2759
https://github.com/sekjun9878
https://github.com/beetbox/beets/issues/2729
https://github.com/beetbox/beets/issues/2605
https://github.com/beetbox/beets/issues/2682
https://github.com/bartkl
https://github.com/beetbox/beets/issues/1881
https://github.com/beetbox/beets/issues/2581
https://github.com/discopatrick
https://github.com/beetbox/beets/issues/2506
https://github.com/beetbox/beets/issues/2528
https://github.com/euri10
https://github.com/beetbox/beets/issues/2598
https://github.com/tigranl
https://github.com/beetbox/beets/issues/2553
https://github.com/beetbox/beets/issues/2586
https://github.com/autrimpo
https://github.com/beetbox/beets/issues/2557
https://github.com/beetbox/beets/issues/2560

beets Documentation, Release 1.4.7

• The move command gained a new --export flag, which copies files to an external location without changing
their paths in the library database. Thanks to SpirosChadoulos. #435 #2510

There are also some bug fixes:

• LastGenre Plugin: Fix a crash when using the prefer_specific and canonical options together. Thanks to yacoob.
#2459 #2583

• Web Plugin: Fix a crash on Windows under Python 2 when serving non-ASCII filenames. Thanks to
robot3498712. #2592 #2593

• MetaSync Plugin: Fix a crash in the Amarok backend when filenames contain quotes. Thanks to aranc23. #2595
#2596

• More informative error messages are displayed when the file format is not recognized. #2599

1.6.4 1.4.4 (June 10, 2017)

This release built up a longer-than-normal list of nifty new features. We now support DSF audio files and the importer
can hard-link your files, for example.

Here’s a full list of new features:

• Added support for DSF files, once a future version of Mutagen is released that supports them. Thanks to
docbobo. #459 #2379

• A new hardlink config option instructs the importer to create hard links on filesystems that support them. Thanks
to jacobwgillespie. #2445

• A new KodiUpdate Plugin lets you keep your Kodi library in sync with beets. Thanks to Pauligrinder. #2411

• A new bell configuration option under the import section enables a terminal bell when input is required.
Thanks to SpirosChadoulos. #2366 #2495

• A new field, composer_sort, is now supported and fetched from MusicBrainz. Thanks to dosoe. #2519
#2529

• The MusicBrainz backend and Discogs Plugin now both provide a new attribute called track_alt that stores
more nuanced, possibly non-numeric track index data. For example, some vinyl or tape media will report the
side of the record using a letter instead of a number in that field. #1831 #2363

• Web Plugin: Added a new endpoint, /item/path/foo, which will return the item info for the file at the given
path, or 404.

• Web Plugin: Added a new config option, include_paths, which will cause paths to be included in item API
responses if set to true.

• The %aunique template function for Album Disambiguation now takes a third argument that specifies which
brackets to use around the disambiguator value. The argument can be any two characters that represent the left
and right brackets. It defaults to [] and can also be blank to turn off bracketing. #2397 #2399

• Added a --move or -m option to the importer so that the files can be moved to the library instead of being
copied or added “in place.” #2252 #2429

• Bad Files Plugin: Added a --verbose or -v option. Results are now displayed only for corrupted files by
default and for all the files when the verbose option is set. #1654 #2434

• EmbedArt Plugin: The explicit embedart command now asks for confirmation before embedding art into
music files. Thanks to Stunner. #1999

• You can now run beets by typing python -m beets. #2453

1.6. Changelog 127

https://github.com/SpirosChadoulos
https://github.com/beetbox/beets/issues/435
https://github.com/beetbox/beets/issues/2510
https://github.com/yacoob
https://github.com/beetbox/beets/issues/2459
https://github.com/beetbox/beets/issues/2583
https://github.com/robot3498712
https://github.com/beetbox/beets/issues/2592
https://github.com/beetbox/beets/issues/2593
https://github.com/aranc23
https://github.com/beetbox/beets/issues/2595
https://github.com/beetbox/beets/issues/2596
https://github.com/beetbox/beets/issues/2599
https://github.com/docbobo
https://github.com/beetbox/beets/issues/459
https://github.com/beetbox/beets/issues/2379
https://github.com/jacobwgillespie
https://github.com/beetbox/beets/issues/2445
https://github.com/Pauligrinder
https://github.com/beetbox/beets/issues/2411
https://github.com/SpirosChadoulos
https://github.com/beetbox/beets/issues/2366
https://github.com/beetbox/beets/issues/2495
https://github.com/dosoe
https://github.com/beetbox/beets/issues/2519
https://github.com/beetbox/beets/issues/2529
https://github.com/beetbox/beets/issues/1831
https://github.com/beetbox/beets/issues/2363
https://github.com/beetbox/beets/issues/2397
https://github.com/beetbox/beets/issues/2399
https://github.com/beetbox/beets/issues/2252
https://github.com/beetbox/beets/issues/2429
https://github.com/beetbox/beets/issues/1654
https://github.com/beetbox/beets/issues/2434
https://github.com/Stunner
https://github.com/beetbox/beets/issues/1999
https://github.com/beetbox/beets/issues/2453

beets Documentation, Release 1.4.7

• Smart Playlist Plugin: Different playlist specifications that generate identically-named playlist files no longer
conflict; instead, the resulting lists of tracks are concatenated. #2468

• Missing Plugin: A new mode lets you see missing albums from artists you have in your library. Thanks to
qlyoung. #2481

• Web Plugin : Add new reverse_proxy config option to allow serving the web plugins under a reverse proxy.

• Importing a release with multiple release events now selects the event based on your preferred countries. #2501

• Play Plugin: A new -y or --yes parameter lets you skip the warning message if you enqueue more items than
the warning threshold usually allows.

• Fix a bug where commands which forked subprocesses would sometimes prevent further inputs. This bug
mainly affected Convert Plugin. Thanks to jansol. #2488 #2524

There are also quite a few fixes:

• In the replace configuration option, we now replace a leading hyphen (-) with an underscore. #549 #2509

• AcousticBrainz Submit Plugin: We no longer filter audio files for specific formats—we will attempt the submis-
sion process for all formats. #2471

• MPDUpdate Plugin: Fix Python 3 compatibility. #2381

• ReplayGain Plugin: Fix Python 3 compatibility in the bs1770gain backend. #2382

• BPD Plugin: Report playback times as integers. #2394

• MPDStats Plugin: Fix Python 3 compatibility. The plugin also now requires version 0.4.2 or later of the
python-mpd2 library. #2405

• MPDStats Plugin: Improve handling of MPD status queries.

• Bad Files Plugin: Fix Python 3 compatibility.

• Fix some cases where album-level ReplayGain/SoundCheck metadata would be written to files incorrectly.
#2426

• Bad Files Plugin: The command no longer bails out if the validator command is not found or exits with an error.
#2430 #2433

• Lyrics Plugin: The Google search backend no longer crashes when the server responds with an error. #2437

• Discogs Plugin: You can now authenticate with Discogs using a personal access token. #2447

• Fix Python 3 compatibility when extracting rar archives in the importer. Thanks to Lompik. #2443 #2448

• Duplicates Plugin: Fix Python 3 compatibility when using the copy and move options. #2444

• MusicBrainz Submit Plugin: The tracks are now sorted properly. Thanks to awesomer. #2457

• Thumbnails Plugin: Fix a string-related crash on Python 3. #2466

• Beatport Plugin: More than just 10 songs are now fetched per album. #2469

• On Python 3, the terminal_encoding setting is respected again for output and printing will no longer crash on
systems configured with a limited encoding.

• Convert Plugin: The default configuration uses FFmpeg’s built-in AAC codec instead of faac. Thanks to jansol.
#2484

• Fix the importer’s detection of multi-disc albums when other subdirectories are present. #2493

• Invalid date queries now print an error message instead of being silently ignored. Thanks to discopatrick. #2513
#2517

128 Chapter 1. Contents

https://github.com/beetbox/beets/issues/2468
https://github.com/qlyoung
https://github.com/beetbox/beets/issues/2481
https://github.com/beetbox/beets/issues/2501
https://github.com/jansol
https://github.com/beetbox/beets/issues/2488
https://github.com/beetbox/beets/issues/2524
https://github.com/beetbox/beets/issues/549
https://github.com/beetbox/beets/issues/2509
https://github.com/beetbox/beets/issues/2471
https://github.com/beetbox/beets/issues/2381
https://github.com/beetbox/beets/issues/2382
https://github.com/beetbox/beets/issues/2394
https://github.com/beetbox/beets/issues/2405
https://github.com/beetbox/beets/issues/2426
https://github.com/beetbox/beets/issues/2430
https://github.com/beetbox/beets/issues/2433
https://github.com/beetbox/beets/issues/2437
https://github.com/beetbox/beets/issues/2447
https://github.com/Lompik
https://github.com/beetbox/beets/issues/2443
https://github.com/beetbox/beets/issues/2448
https://github.com/beetbox/beets/issues/2444
https://github.com/awesomer
https://github.com/beetbox/beets/issues/2457
https://github.com/beetbox/beets/issues/2466
https://github.com/beetbox/beets/issues/2469
https://github.com/jansol
https://github.com/beetbox/beets/issues/2484
https://github.com/beetbox/beets/issues/2493
https://github.com/discopatrick
https://github.com/beetbox/beets/issues/2513
https://github.com/beetbox/beets/issues/2517

beets Documentation, Release 1.4.7

• When the SQLite database stops being accessible, we now print a friendly error message. Thanks to
Mary011196. #1676 #2508

• Web Plugin: Avoid a crash when sending binary data, such as Chromaprint fingerprints, in music attributes.
#2542 #2532

• Fix a hang when parsing templates that end in newlines. #2562

• Fix a crash when reading non-ASCII characters in configuration files on Windows under Python 3. #2456 #2565
#2566

We removed backends from two metadata plugins because of bitrot:

• Lyrics Plugin: The Lyrics.com backend has been removed. (It stopped working because of changes to the site’s
URL structure.) #2548 #2549

• FetchArt Plugin: The documentation no longer recommends iTunes Store artwork lookup because the unmain-
tained python-itunes is broken. Want to adopt it? #2371 #1610

1.6.5 1.4.3 (January 9, 2017)

Happy new year! This new version includes a cornucopia of new features from contributors, including new tags
related to classical music and a new AcousticBrainz Submit Plugin for performing acoustic analysis on your music.
The Random Plugin has a new mode that lets you generate time-limited music—for example, you might generate a
random playlist that lasts the perfect length for your walk to work. We also access as many Web services as possible
over secure connections now—HTTPS everywhere!

The most visible new features are:

• We now support the composer, lyricist, and arranger tags. The MusicBrainz data source will fetch data for these
fields when the next version of python-musicbrainzngs is released. Thanks to ibmibmibm. #506 #507 #1547
#2333

• A new AcousticBrainz Submit Plugin lets you run acoustic analysis software and upload the results for others to
use. Thanks to inytar. #2253 #2342

• Play Plugin: The plugin now provides an importer prompt choice to play the music you’re about to import.
Thanks to diomekes. #2008 #2360

• We now use SSL to access Web services whenever possible. That includes MusicBrainz itself, several album art
sources, some lyrics sources, and other servers. Thanks to tigranl. #2307

• Random Plugin: A new --time option lets you generate a random playlist that takes a given amount of time.
Thanks to diomekes. #2305 #2322

Some smaller new features:

• Zero Plugin: A new zero command manually triggers the zero plugin. Thanks to SJoshBrown. #2274 #2329

• AcousticBrainz Plugin: The plugin will avoid re-downloading data for files that already have it by default. You
can override this behavior using a new force option. Thanks to SusannaMaria. #2347 #2349

• BPM Plugin: The import.write configuration option now decides whether or not to write tracks after
updating their BPM. #1992

And the fixes:

• BPD Plugin: Fix a crash on non-ASCII MPD commands. #2332

• Scrub Plugin: Avoid a crash when files cannot be read or written. #2351

• Scrub Plugin: The image type values on scrubbed files are preserved instead of being reset to “other.” #2339

• Web Plugin: Fix a crash on Python 3 when serving files from the filesystem. #2353

1.6. Changelog 129

https://github.com/Mary011196
https://github.com/beetbox/beets/issues/1676
https://github.com/beetbox/beets/issues/2508
https://github.com/beetbox/beets/issues/2542
https://github.com/beetbox/beets/issues/2532
https://github.com/beetbox/beets/issues/2562
https://github.com/beetbox/beets/issues/2456
https://github.com/beetbox/beets/issues/2565
https://github.com/beetbox/beets/issues/2566
https://github.com/beetbox/beets/issues/2548
https://github.com/beetbox/beets/issues/2549
https://github.com/ocelma/python-itunes
https://github.com/beetbox/beets/issues/2371
https://github.com/beetbox/beets/issues/1610
https://github.com/alastair/python-musicbrainzngs
https://github.com/ibmibmibm
https://github.com/beetbox/beets/issues/506
https://github.com/beetbox/beets/issues/507
https://github.com/beetbox/beets/issues/1547
https://github.com/beetbox/beets/issues/2333
https://github.com/inytar
https://github.com/beetbox/beets/issues/2253
https://github.com/beetbox/beets/issues/2342
https://github.com/diomekes
https://github.com/beetbox/beets/issues/2008
https://github.com/beetbox/beets/issues/2360
https://github.com/tigranl
https://github.com/beetbox/beets/issues/2307
https://github.com/diomekes
https://github.com/beetbox/beets/issues/2305
https://github.com/beetbox/beets/issues/2322
https://github.com/SJoshBrown
https://github.com/beetbox/beets/issues/2274
https://github.com/beetbox/beets/issues/2329
https://github.com/SusannaMaria
https://github.com/beetbox/beets/issues/2347
https://github.com/beetbox/beets/issues/2349
https://github.com/beetbox/beets/issues/1992
https://github.com/beetbox/beets/issues/2332
https://github.com/beetbox/beets/issues/2351
https://github.com/beetbox/beets/issues/2339
https://github.com/beetbox/beets/issues/2353

beets Documentation, Release 1.4.7

• Discogs Plugin: Improve the handling of releases that contain subtracks. #2318

• Discogs Plugin: Fix a crash when a release does not contain format information, and increase robustness when
other fields are missing. #2302

• Lyrics Plugin: The plugin now reports a beets-specific User-Agent header when requesting lyrics. #2357

• EmbyUpdate Plugin: The plugin now checks whether an API key or a password is provided in the configuration.

• Play Plugin: The misspelled configuration option warning_treshold is no longer supported.

For plugin developers: when providing new importer prompt choices (see Append Prompt Choices), you can now
provide new candidates for the user to consider. For example, you might provide an alternative strategy for picking
between the available alternatives or for looking up a release on MusicBrainz.

1.6.6 1.4.2 (December 16, 2016)

This is just a little bug fix release. With 1.4.2, we’re also confident enough to recommend that anyone who’s interested
give Python 3 a try: bugs may still lurk, but we’ve deemed things safe enough for broad adoption. If you can, please
install beets with pip3 instead of pip2 this time and let us know how it goes!

Here are the fixes:

• Bad Files Plugin: Fix a crash on non-ASCII filenames. #2299

• The %asciify{} path formatting function and the asciify_paths setting properly substitute path separators
generated by converting some Unicode characters, such as ½ and ¢, into ASCII.

• Convert Plugin: Fix a logging-related crash when filenames contain curly braces. Thanks to kierdavis. #2323

• We’ve rolled back some changes to the included zsh completion script that were causing problems for some
users. #2266

Also, we’ve removed some special handling for logging in the Discogs Plugin that we believe was unnecessary. If
spurious log messages appear in this version, please let us know by filing a bug.

1.6.7 1.4.1 (November 25, 2016)

Version 1.4 has alpha-level Python 3 support. Thanks to the heroic efforts of jrobeson, beets should run both under
Python 2.7, as before, and now under Python 3.4 and above. The support is still new: it undoubtedly contains bugs,
so it may replace all your music with Limp Bizkit—but if you’re brave and you have backups, please try installing on
Python 3. Let us know how it goes.

If you package beets for distribution, here’s what you’ll want to know:

• This version of beets now depends on the six library.

• We also bumped our minimum required version of Mutagen to 1.33 (from 1.27).

• Please don’t package beets as a Python 3 application yet, even though most things work under Python 3.4 and
later.

This version also makes a few changes to the command-line interface and configuration that you may need to know
about:

• Duplicates Plugin: The duplicates command no longer accepts multiple field arguments in the form
-k title albumartist album. Each argument must be prefixed with -k, as in -k title -k
albumartist -k album.

• The old top-level colors configuration option has been removed (the setting is now under ui).

130 Chapter 1. Contents

https://github.com/beetbox/beets/issues/2318
https://github.com/beetbox/beets/issues/2302
https://github.com/beetbox/beets/issues/2357
https://github.com/beetbox/beets/issues/2299
https://github.com/kierdavis
https://github.com/beetbox/beets/issues/2323
https://github.com/beetbox/beets/issues/2266
https://github.com/jrobeson
https://pythonhosted.org/six/
https://bitbucket.org/lazka/mutagen

beets Documentation, Release 1.4.7

• The deprecated list_format_album and list_format_item configuration options have been removed
(see format_album and format_item).

The are a few new features:

• MPDUpdate Plugin, MPDStats Plugin: When the host option is not set, these plugins will now look for the
$MPD_HOST environment variable before falling back to localhost. Thanks to tarruda. #2175

• Web Plugin: Added an expand option to show the items of an album. #2050

• EmbyUpdate Plugin: The plugin can now use an API key instead of a password to authenticate with Emby.
#2045 #2117

• AcousticBrainz Plugin: The plugin now adds a bpm field.

• beet --version now includes the Python version used to run beets.

• Path Formats can now include unescaped commas (,) when they are not part of a function call. #2166 #2213

• The update command takes a new -F flag to specify the fields to update. Thanks to dangmai. #2229 #2231

And there are a few bug fixes too:

• Convert Plugin: The plugin no longer asks for confirmation if the query did not return anything to convert.
#2260 #2262

• EmbedArt Plugin: The plugin now uses jpg as an extension rather than jpeg, to ensure consistency with the
FetchArt Plugin. Thanks to tweitzel. #2254 #2255

• EmbedArt Plugin: The plugin now works for all jpeg files, including those that are only recognizable by their
magic bytes. #1545 #2255

• Web Plugin: The JSON output is no longer pretty-printed (for a space savings). #2050

• Permissions Plugin: Fix a regression in the previous release where the plugin would always fail to set permis-
sions (and log a warning). #2089

• Beatport Plugin: Use track numbers from Beatport (instead of determining them from the order of tracks) and
set the medium_index value.

• With per_disc_numbering enabled, some metadata sources (notably, the Beatport Plugin) would not set the
track number at all. This is fixed. #2085

• Play Plugin: Fix $args getting passed verbatim to the play command if it was set in the configuration but -A
or --args was omitted.

• With ignore_hidden enabled, non-UTF-8 filenames would cause a crash. This is fixed. #2168

• EmbyUpdate Plugin: Fixes authentication header problem that caused a problem that it was not possible to get
tokens from the Emby API.

• Lyrics Plugin: Some titles use a colon to separate the main title from a subtitle. To find more matches, the plugin
now also searches for lyrics using the part part preceding the colon character. #2206

• Fix a crash when a query uses a date field and some items are missing that field. #1938

• Discogs Plugin: Subtracks are now detected and combined into a single track, two-sided mediums are treated
as single discs, and tracks have media, medium_total and medium set correctly. #2222 #2228.

• Missing Plugin: missing is now treated as an integer, allowing the use of (for example) ranges in queries.

• Smart Playlist Plugin: Playlist names will be sanitized to ensure valid filenames. #2258

• The ID3 APIC tag now uses the Latin-1 encoding when possible instead of a Unicode encoding. This should
increase compatibility with other software, especially with iTunes and when using ID3v2.3. Thanks to lazka.
#899 #2264 #2270

1.6. Changelog 131

https://github.com/tarruda
https://github.com/beetbox/beets/issues/2175
https://github.com/beetbox/beets/issues/2050
https://github.com/beetbox/beets/issues/2045
https://github.com/beetbox/beets/issues/2117
https://github.com/beetbox/beets/issues/2166
https://github.com/beetbox/beets/issues/2213
https://github.com/dangmai
https://github.com/beetbox/beets/issues/2229
https://github.com/beetbox/beets/issues/2231
https://github.com/beetbox/beets/issues/2260
https://github.com/beetbox/beets/issues/2262
https://github.com/tweitzel
https://github.com/beetbox/beets/issues/2254
https://github.com/beetbox/beets/issues/2255
https://github.com/beetbox/beets/issues/1545
https://github.com/beetbox/beets/issues/2255
https://github.com/beetbox/beets/issues/2050
https://github.com/beetbox/beets/issues/2089
https://github.com/beetbox/beets/issues/2085
https://github.com/beetbox/beets/issues/2168
https://github.com/beetbox/beets/issues/2206
https://github.com/beetbox/beets/issues/1938
https://github.com/beetbox/beets/issues/2222
https://github.com/beetbox/beets/issues/2228
https://github.com/beetbox/beets/issues/2258
https://github.com/lazka
https://github.com/beetbox/beets/issues/899
https://github.com/beetbox/beets/issues/2264
https://github.com/beetbox/beets/issues/2270

beets Documentation, Release 1.4.7

The last release, 1.3.19, also erroneously reported its version as “1.3.18” when you typed beet version. This has
been corrected.

1.6.8 1.3.19 (June 25, 2016)

This is primarily a bug fix release: it cleans up a couple of regressions that appeared in the last version. But it also
features the triumphant return of the Beatport Plugin and a modernized BPD Plugin.

It’s also the first version where beets passes all its tests on Windows! May this herald a new age of cross-platform
reliability for beets.

New features:

• Beatport Plugin: This metadata source plugin has arisen from the dead! It now works with Beatport’s new
OAuth-based API. Thanks to jbaiter. #1989 #2067

• BPD Plugin: The plugin now uses the modern GStreamer 1.0 instead of the old 0.10. Thanks to philippbeck-
mann. #2057 #2062

• A new --force option for the remove command allows removal of items without prompting beforehand.
#2042

• A new duplicate_action importer config option controls how duplicate albums or tracks treated in import task.
#185

Some fixes for Windows:

• Queries are now detected as paths when they contain backslashes (in addition to forward slashes). This only
applies on Windows.

• EmbedArt Plugin: Image similarity comparison with ImageMagick should now work on Windows.

• FetchArt Plugin: The plugin should work more reliably with non-ASCII paths.

And other fixes:

• ReplayGain Plugin: The bs1770gain backend now correctly calculates sample peak instead of true peak.
This comes with a major speed increase. #2031

• Lyrics Plugin: Avoid a crash and a spurious warning introduced in the last version about a Google API key,
which appeared even when you hadn’t enabled the Google lyrics source.

• Fix a hard-coded path to bash-completion to work better with Homebrew installations. Thanks to bismark.
#2038

• Fix a crash introduced in the previous version when the standard input was connected to a Unix pipe. #2041

• Fix a crash when specifying non-ASCII format strings on the command line with the -f option for many
commands. #2063

• FetchArt Plugin: Determine the file extension for downloaded images based on the image’s magic bytes. The
plugin prints a warning if result is not consistent with the server-supplied Content-Type header. In previous
versions, the plugin would use a .jpg extension for all images. #2053

1.6.9 1.3.18 (May 31, 2016)

This update adds a new Hook Plugin that lets you integrate beets with command-line tools and an Export Plugin that
can dump data from the beets database as JSON. You can also automatically translate lyrics using a machine translation
service.

132 Chapter 1. Contents

https://github.com/jbaiter
https://github.com/beetbox/beets/issues/1989
https://github.com/beetbox/beets/issues/2067
https://github.com/philippbeckmann
https://github.com/philippbeckmann
https://github.com/beetbox/beets/issues/2057
https://github.com/beetbox/beets/issues/2062
https://github.com/beetbox/beets/issues/2042
https://github.com/beetbox/beets/issues/185
https://github.com/beetbox/beets/issues/2031
https://github.com/bismark
https://github.com/beetbox/beets/issues/2038
https://github.com/beetbox/beets/issues/2041
https://github.com/beetbox/beets/issues/2063
https://github.com/beetbox/beets/issues/2053

beets Documentation, Release 1.4.7

The echonest plugin has been removed in this version because the API it used is shutting down. You might want to
try the AcousticBrainz Plugin instead.

Some of the larger new features:

• The new Hook Plugin lets you execute commands in response to beets events.

• The new Export Plugin can export data from beets’ database as JSON. Thanks to GuilhermeHideki.

• Lyrics Plugin: The plugin can now translate the fetched lyrics to your native language using the Bing translation
API. Thanks to Kraymer.

• FetchArt Plugin: Album art can now be fetched from fanart.tv.

Smaller new things:

• There are two new functions available in templates: %first and %ifdef. See Template Functions.

• Convert Plugin: A new album_art_maxwidth setting lets you resize album art while copying it.

• Convert Plugin: The extension setting is now optional for conversion formats. By default, the extension is the
same as the name of the configured format.

• ImportAdded Plugin: A new preserve_write_mtimes option lets you preserve mtime of files even when beets
updates their metadata.

• FetchArt Plugin: The enforce_ratio option now lets you tolerate images that are almost square but differ slightly
from an exact 1:1 aspect ratio.

• FetchArt Plugin: The plugin can now optionally save the artwork’s source in an attribute in the database.

• The terminal_encoding configuration option can now also override the input encoding. (Previously, it only
affected the encoding of the standard output stream.)

• A new ignore_hidden configuration option lets you ignore files that your OS marks as invisible.

• Web Plugin: A new values endpoint lets you get the distinct values of a field. Thanks to sumpfralle. #2010

Fixes:

• Fix a problem with the stats command in exact mode when filenames on Windows use non-ASCII characters.
#1891

• Fix a crash when iTunes Sound Check tags contained invalid data. #1895

• MusicBrainz Collection Plugin: The plugin now redacts your MusicBrainz password in the beet config
output. #1907

• Scrub Plugin: Fix an occasional problem where scrubbing on import could undo the id3v23 setting. #1903

• Lyrics Plugin: Add compatibility with some changes to the LyricsWiki page markup. #1912 #1909

• Lyrics Plugin: Fix retrieval from Musixmatch by improving the way we guess the URL for lyrics on that service.
#1880

• Edit Plugin: Fail gracefully when the configured text editor command can’t be invoked. #1927

• FetchArt Plugin: Fix a crash in the Wikipedia backend on non-ASCII artist and album names. #1960

• Convert Plugin: Change the default ogg encoding quality from 2 to 3 (to fit the default from the oggenc(1)
manpage). #1982

• Convert Plugin: The never_convert_lossy_files option now considers AIFF a lossless format. #2005

• Web Plugin: A proper 404 error, instead of an internal exception, is returned when missing album art is re-
quested. Thanks to sumpfralle. #2011

• Tolerate more malformed floating-point numbers in metadata tags. #2014

1.6. Changelog 133

https://developer.spotify.com/news-stories/2016/03/29/api-improvements-update/
https://github.com/GuilhermeHideki
https://github.com/Kraymer
https://fanart.tv/
https://github.com/sumpfralle
https://github.com/beetbox/beets/issues/2010
https://github.com/beetbox/beets/issues/1891
https://github.com/beetbox/beets/issues/1895
https://github.com/beetbox/beets/issues/1907
https://github.com/beetbox/beets/issues/1903
https://github.com/beetbox/beets/issues/1912
https://github.com/beetbox/beets/issues/1909
https://github.com/beetbox/beets/issues/1880
https://github.com/beetbox/beets/issues/1927
https://github.com/beetbox/beets/issues/1960
https://github.com/beetbox/beets/issues/1982
https://github.com/beetbox/beets/issues/2005
https://github.com/sumpfralle
https://github.com/beetbox/beets/issues/2011
https://github.com/beetbox/beets/issues/2014

beets Documentation, Release 1.4.7

• The ignore configuration option now includes the lost+found directory by default.

• AcousticBrainz Plugin: AcousticBrainz lookups are now done over HTTPS. Thanks to Freso. #2007

1.6.10 1.3.17 (February 7, 2016)

This release introduces one new plugin to fetch audio information from the AcousticBrainz project and another plugin
to make it easier to submit your handcrafted metadata back to MusicBrainz. The importer also gained two oft-requested
features: a way to skip the initial search process by specifying an ID ahead of time, and a way to manually provide
metadata in the middle of the import process (via the Edit Plugin).

Also, as of this release, the beets project has some new Internet homes! Our new domain name is beets.io, and we
have a shiny new GitHub organization: beetbox.

Here are the big new features:

• A new AcousticBrainz Plugin fetches acoustic-analysis information from the AcousticBrainz project. Thanks to
opatel99, and thanks to Google Code-In! #1784

• A new MusicBrainz Submit Plugin lets you print music’s current metadata in a format that the MusicBrainz data
parser can understand. You can trigger it during an interactive import session. #1779

• A new --search-id importer option lets you manually specify IDs (i.e., MBIDs or Discogs IDs) for imported
music. Doing this skips the initial candidate search, which can be important for huge albums where this initial
lookup is slow. Also, the enter Id prompt choice now accepts several IDs, separated by spaces. #1808

• Edit Plugin: You can now edit metadata on the fly during the import process. The plugin provides two new
interactive options: one to edit your music’s metadata, and one to edit the matched metadata retrieved from
MusicBrainz (or another data source). This feature is still in its early stages, so please send feedback if you find
anything missing. #1846 #396

There are even more new features:

• FetchArt Plugin: The Google Images backend has been restored. It now requires an API key from Google.
Thanks to lcharlick. #1778

• Info Plugin: A new option will print only fields’ names and not their values. Thanks to GuilhermeHideki. #1812

• The fields command now displays flexible attributes. Thanks to GuilhermeHideki. #1818

• The modify command lets you interactively select which albums or items you want to change. #1843

• The move command gained a new --timid flag to print and confirm which files you want to move. #1843

• The move command no longer prints filenames for files that don’t actually need to be moved. #1583

Fixes:

• Play Plugin: Fix a regression in the last version where there was no default command. #1793

• LastImport Plugin: The plugin now works again after being broken by some unannounced changes to the
Last.fm API. #1574

• Play Plugin: Fixed a typo in a configuration option. The option is now warning_threshold instead of
warning_treshold, but we kept the old name around for compatibility. Thanks to JesseWeinstein. #1802
#1803

• Edit Plugin: Editing metadata now moves files, when appropriate (like the modify command). #1804

• The stats command no longer crashes when files are missing or inaccessible. #1806

• FetchArt Plugin: Possibly fix a Unicode-related crash when using some versions of pyOpenSSL. #1805

• ReplayGain Plugin: Fix an intermittent crash with the GStreamer backend. #1855

134 Chapter 1. Contents

https://github.com/Freso
https://github.com/beetbox/beets/issues/2007
http://acousticbrainz.org/
http://beets.io/
https://github.com/beetbox
http://acousticbrainz.org/
https://github.com/opatel99
https://codein.withgoogle.com/
https://github.com/beetbox/beets/issues/1784
https://github.com/beetbox/beets/issues/1779
https://github.com/beetbox/beets/issues/1808
https://github.com/beetbox/beets/issues/1846
https://github.com/beetbox/beets/issues/396
https://github.com/lcharlick
https://github.com/beetbox/beets/issues/1778
https://github.com/GuilhermeHideki
https://github.com/beetbox/beets/issues/1812
https://github.com/GuilhermeHideki
https://github.com/beetbox/beets/issues/1818
https://github.com/beetbox/beets/issues/1843
https://github.com/beetbox/beets/issues/1843
https://github.com/beetbox/beets/issues/1583
https://github.com/beetbox/beets/issues/1793
https://github.com/beetbox/beets/issues/1574
https://github.com/JesseWeinstein
https://github.com/beetbox/beets/issues/1802
https://github.com/beetbox/beets/issues/1803
https://github.com/beetbox/beets/issues/1804
https://github.com/beetbox/beets/issues/1806
https://github.com/beetbox/beets/issues/1805
https://github.com/beetbox/beets/issues/1855

beets Documentation, Release 1.4.7

• LastImport Plugin: The plugin now works with the beets API key by default. You can still provide a different
key the configuration.

• ReplayGain Plugin: Fix a crash using the Python Audio Tools backend. #1873

1.6.11 1.3.16 (December 28, 2015)

The big news in this release is a new interactive editor plugin. It’s really nifty: you can now change your music’s
metadata by making changes in a visual text editor, which can sometimes be far more efficient than the built-in modify
command. No more carefully retyping the same artist name with slight capitalization changes.

This version also adds an oft-requested “not” operator to beets’ queries, so you can exclude music from any operation.
It also brings friendlier formatting (and querying!) of song durations.

The big new stuff:

• A new Edit Plugin lets you manually edit your music’s metadata using your favorite text editor. #164 #1706

• Queries can now use “not” logic. Type a ^ before part of a query to exclude matching music from the results.
For example, beet list -a beatles ^album:1 will find all your albums by the Beatles except for
their singles compilation, “1.” See Query Term Negation. #819 #1728

• A new EmbyUpdate Plugin can trigger a library refresh on an Emby server when your beets database changes.

• Track length is now displayed as “M:SS” rather than a raw number of seconds. Queries on track length also
accept this format: for example, beet list length:5:30.. will find all your tracks that have a dura-
tion over 5 minutes and 30 seconds. You can turn off this new behavior using the format_raw_length
configuration option. #1749

Smaller changes:

• Three commands, modify, update, and mbsync, would previously move files by default after changing
their metadata. Now, these commands will only move files if you have the copy or move options enabled in your
importer configuration. This way, if you configure the importer not to touch your filenames, other commands
will respect that decision by default too. Each command also sprouted a --move command-line option to
override this default (in addition to the --nomove flag they already had). #1697

• A new configuration option, va_name, controls the album artist name for various-artists albums. The setting
defaults to “Various Artists,” the MusicBrainz standard. In order to match MusicBrainz, the Discogs Plugin also
adopts the same setting.

• Info Plugin: The info command now accepts a -f/--format option for customizing how items are dis-
played, just like the built-in list command. #1737

Some changes for developers:

• Two new plugin hooks, albuminfo_received and trackinfo_received, let plugins intercept meta-
data as soon as it is received, before it is applied to music in the database. #872

• Plugins can now add options to the interactive importer prompts. See Append Prompt Choices. #1758

Fixes:

• PlexUpdate Plugin: Fix a crash when Plex libraries use non-ASCII collection names. #1649

• Discogs Plugin: Maybe fix a crash when using some versions of the requests library. #1656

• Fix a race in the importer when importing two albums with the same artist and name in quick succession. The
importer would fail to detect them as duplicates, claiming that there were “empty albums” in the database even
when there were not. #1652

• LastGenre Plugin: Clean up the reggae-related genres somewhat. Thanks to Freso. #1661

1.6. Changelog 135

https://github.com/beetbox/beets/issues/1873
https://github.com/beetbox/beets/issues/164
https://github.com/beetbox/beets/issues/1706
https://github.com/beetbox/beets/issues/819
https://github.com/beetbox/beets/issues/1728
http://emby.media
https://github.com/beetbox/beets/issues/1749
https://github.com/beetbox/beets/issues/1697
https://github.com/beetbox/beets/issues/1737
https://github.com/beetbox/beets/issues/872
https://github.com/beetbox/beets/issues/1758
https://github.com/beetbox/beets/issues/1649
https://github.com/beetbox/beets/issues/1656
https://github.com/beetbox/beets/issues/1652
https://github.com/Freso
https://github.com/beetbox/beets/issues/1661

beets Documentation, Release 1.4.7

• The importer now correctly moves album art files when re-importing. #314

• FetchArt Plugin: In auto mode, the plugin now skips albums that already have art attached to them so as not to
interfere with re-imports. #314

• FetchArt Plugin: The plugin now only resizes album art if necessary, rather than always by default. #1264

• FetchArt Plugin: Fix a bug where a database reference to a non-existent album art file would prevent the com-
mand from fetching new art. #1126

• Thumbnails Plugin: Fix a crash with Unicode paths. #1686

• EmbedArt Plugin: The remove_art_file option now works on import (as well as with the explicit com-
mand). #1662 #1675

• MetaSync Plugin: Fix a crash when syncing with recent versions of iTunes. #1700

• Duplicates Plugin: Fix a crash when merging items. #1699

• Smart Playlist Plugin: More gracefully handle malformed queries and missing configuration.

• Fix a crash with some files with unreadable iTunes SoundCheck metadata. #1666

• Thumbnails Plugin: Fix a nasty segmentation fault crash that arose with some library versions. #1433

• Convert Plugin: Fix a crash with Unicode paths in --pretend mode. #1735

• Fix a crash when sorting by nonexistent fields on queries. #1734

• Probably fix some mysterious errors when dealing with images using ImageMagick on Windows. #1721

• Fix a crash when writing some Unicode comment strings to MP3s that used older encodings. The encoding is
now always updated to UTF-8. #879

• FetchArt Plugin: The Google Images backend has been removed. It used an API that has been shut down. #1760

• Lyrics Plugin: Fix a crash in the Google backend when searching for bands with regular-expression characters
in their names, like Sunn O))). #1673

• Scrub Plugin: In auto mode, the plugin now actually only scrubs files on import, as the documentation always
claimed it did—not every time files were written, as it previously did. #1657

• Scrub Plugin: Also in auto mode, album art is now correctly restored. #1657

• Possibly allow flexible attributes to be used with the %aunique template function. #1775

• Lyrics Plugin: The Genius backend is now more robust to communication errors. The backend has also been
disabled by default, since the API it depends on is currently down. #1770

1.6.12 1.3.15 (October 17, 2015)

This release adds a new plugin for checking file quality and a new source for lyrics. The larger features are:

• A new Bad Files Plugin helps you scan for corruption in your music collection. Thanks to fxthomas. #1568

• Lyrics Plugin: You can now fetch lyrics from Genius.com. Thanks to sadatay. #1626 #1639

• Zero Plugin: The plugin can now use a “whitelist” policy as an alternative to the (default) “blacklist” mode.
Thanks to adkow. #1621 #1641

And there are smaller new features too:

• Add new color aliases for standard terminal color names (e.g., cyan and magenta). Thanks to mathstuf. #1548

• Play Plugin: A new --args option lets you specify options for the player command. #1532

136 Chapter 1. Contents

https://github.com/beetbox/beets/issues/314
https://github.com/beetbox/beets/issues/314
https://github.com/beetbox/beets/issues/1264
https://github.com/beetbox/beets/issues/1126
https://github.com/beetbox/beets/issues/1686
https://github.com/beetbox/beets/issues/1662
https://github.com/beetbox/beets/issues/1675
https://github.com/beetbox/beets/issues/1700
https://github.com/beetbox/beets/issues/1699
https://github.com/beetbox/beets/issues/1666
https://github.com/beetbox/beets/issues/1433
https://github.com/beetbox/beets/issues/1735
https://github.com/beetbox/beets/issues/1734
https://github.com/beetbox/beets/issues/1721
https://github.com/beetbox/beets/issues/879
https://github.com/beetbox/beets/issues/1760
https://github.com/beetbox/beets/issues/1673
https://github.com/beetbox/beets/issues/1657
https://github.com/beetbox/beets/issues/1657
https://github.com/beetbox/beets/issues/1775
https://github.com/beetbox/beets/issues/1770
https://github.com/fxthomas
https://github.com/beetbox/beets/issues/1568
https://github.com/sadatay
https://github.com/beetbox/beets/issues/1626
https://github.com/beetbox/beets/issues/1639
https://github.com/adkow
https://github.com/beetbox/beets/issues/1621
https://github.com/beetbox/beets/issues/1641
https://github.com/mathstuf
https://github.com/beetbox/beets/issues/1548
https://github.com/beetbox/beets/issues/1532

beets Documentation, Release 1.4.7

• Play Plugin: A new raw configuration option lets the command work with players (such as VLC) that expect
music filenames as arguments, rather than in a playlist. Thanks to nathdwek. #1578

• Play Plugin: You can now configure the number of tracks that trigger a “lots of music” warning. #1577

• EmbedArt Plugin: A new remove_art_file option lets you clean up if you prefer only embedded album
art. Thanks to jackwilsdon. #1591 #733

• PlexUpdate Plugin: A new library_name option allows you to select which Plex library to update. #1572
#1595

• A new include option lets you import external configuration files.

This release has plenty of fixes:

• LastGenre Plugin: Fix a bug that prevented tag popularity from being considered. Thanks to svoos. #1559

• Fixed a bug where plugins wouldn’t be notified of the deletion of an item’s art, for example with the clearart
command from the EmbedArt Plugin. Thanks to nathdwek. #1565

• FetchArt Plugin: The Google Images source is disabled by default (as it was before beets 1.3.9), as is the
Wikipedia source (which was causing lots of unnecessary delays due to DBpedia downtime). To re-enable these
sources, add wikipedia google to your sources configuration option.

• The list command’s help output now has a small query and format string example. Thanks to pkess. #1582

• FetchArt Plugin: The plugin now fetches PNGs but not GIFs. (It still fetches JPEGs.) This avoids an error when
trying to embed images, since not all formats support GIFs. #1588

• Date fields are now written in the correct order (year-month-day), which eliminates an intermittent bug where
the latter two fields would not get written to files. Thanks to jdetrey. #1303 #1589

• ReplayGain Plugin: Avoid a crash when the PyAudioTools backend encounters an error. #1592

• The case sensitivity of path queries is more useful now: rather than just guessing based on the platform, we now
check the case sensitivity of your filesystem. #1586

• Case-insensitive path queries might have returned nothing because of a wrong SQL query.

• Fix a crash when a query contains a “+” or “-” alone in a component. #1605

• Fixed unit of file size to powers of two (MiB, GiB, etc.) instead of powers of ten (MB, GB, etc.). #1623

1.6.13 1.3.14 (August 2, 2015)

This is mainly a bugfix release, but we also have a nifty new plugin for ipfs and a bunch of new configuration options.

The new features:

• A new IPFS Plugin lets you share music via a new, global, decentralized filesystem. #1397

• Duplicates Plugin: You can now merge duplicate track metadata (when detecting duplicate items), or duplicate
album tracks (when detecting duplicate albums).

• Duplicates Plugin: Duplicate resolution now uses an ordering to prioritize duplicates. By default, it prefers
music with more complete metadata, but you can configure it to use any list of attributes.

• MetaSync Plugin: Added a new backend to fetch metadata from iTunes. This plugin is still in an experimental
phase. #1450

• The move command has a new --pretend option, making the command show how the items will be moved
without actually changing anything.

1.6. Changelog 137

https://github.com/nathdwek
https://github.com/beetbox/beets/issues/1578
https://github.com/beetbox/beets/issues/1577
https://github.com/jackwilsdon
https://github.com/beetbox/beets/issues/1591
https://github.com/beetbox/beets/issues/733
https://github.com/beetbox/beets/issues/1572
https://github.com/beetbox/beets/issues/1595
https://github.com/svoos
https://github.com/beetbox/beets/issues/1559
https://github.com/nathdwek
https://github.com/beetbox/beets/issues/1565
https://github.com/pkess
https://github.com/beetbox/beets/issues/1582
https://github.com/beetbox/beets/issues/1588
https://github.com/jdetrey
https://github.com/beetbox/beets/issues/1303
https://github.com/beetbox/beets/issues/1589
https://github.com/beetbox/beets/issues/1592
https://github.com/beetbox/beets/issues/1586
https://github.com/beetbox/beets/issues/1605
https://github.com/beetbox/beets/issues/1623
http://ipfs.io
https://github.com/beetbox/beets/issues/1397
https://github.com/beetbox/beets/issues/1450

beets Documentation, Release 1.4.7

• The importer now supports matching of “pregap” or HTOA (hidden track-one audio) tracks when they are listed
in MusicBrainz. (This feature depends on a new version of the python-musicbrainzngs library that is not yet
released, but will start working when it is available.) Thanks to ruippeixotog. #1104 #1493

• PlexUpdate Plugin: A new token configuration option lets you specify a key for Plex Home setups. Thanks to
edcarroll. #1494

Fixes:

• FetchArt Plugin: Complain when the enforce_ratio or min_width options are enabled but no local imaging
backend is available to carry them out. #1460

• ImportFeeds Plugin: Avoid generating incorrect m3u filename when both of the m3u and m3u_multi options are
enabled. #1490

• Duplicates Plugin: Avoid a crash when misconfigured. #1457

• MPDStats Plugin: Avoid a crash when the music played is not in the beets library. Thanks to CodyReichert.
#1443

• Fix a crash with ArtResizer on Windows systems (affecting EmbedArt Plugin, FetchArt Plugin, and Thumbnails
Plugin). #1448

• Permissions Plugin: Fix an error with non-ASCII paths. #1449

• Fix sorting by paths when the sort_case_insensitive option is enabled. #1451

• EmbedArt Plugin: Avoid an error when trying to embed invalid images into MPEG-4 files.

• FetchArt Plugin: The Wikipedia source can now better deal artists that use non-standard capitalization (e.g.,
alt-J, dEUS).

• Web Plugin: Fix searching for non-ASCII queries. Thanks to oldtopman. #1470

• MPDUpdate Plugin: We now recommend the newer python-mpd2 library instead of its unmaintained parent.
Thanks to Somasis. #1472

• The importer interface and log file now output a useful list of files (instead of the word “None”) when in album-
grouping mode. #1475 #825

• Fix some logging errors when filenames and other user-provided strings contain curly braces. #1481

• Regular expression queries over paths now work more reliably with non-ASCII characters in filenames. #1482

• Fix a bug where the autotagger’s ignored setting was sometimes, well, ignored. #1487

• Fix a bug with Unicode strings when generating image thumbnails. #1485

• Key Finder Plugin: Fix handling of Unicode paths. #1502

• FetchArt Plugin: When album art is already present, the message is now printed in the
text_highlight_minor color (light gray). Thanks to Somasis. #1512

• Some messages in the console UI now use plural nouns correctly. Thanks to JesseWeinstein. #1521

• Sorting numerical fields (such as track) now works again. #1511

• ReplayGain Plugin: Missing GStreamer plugins now cause a helpful error message instead of a crash. #1518

• Fix an edge case when producing sanitized filenames where the maximum path length conflicted with the replace
rules. Thanks to Ben Ockmore. #496 #1361

• Fix an incompatibility with OS X 10.11 (where /usr/sbin seems not to be on the user’s path by default).

• Fix an incompatibility with certain JPEG files. Here’s a relevant Python bug. Thanks to nathdwek. #1545

138 Chapter 1. Contents

https://github.com/alastair/python-musicbrainzngs
https://github.com/ruippeixotog
https://github.com/beetbox/beets/issues/1104
https://github.com/beetbox/beets/issues/1493
https://github.com/edcarroll
https://github.com/beetbox/beets/issues/1494
https://github.com/beetbox/beets/issues/1460
https://github.com/beetbox/beets/issues/1490
https://github.com/beetbox/beets/issues/1457
https://github.com/CodyReichert
https://github.com/beetbox/beets/issues/1443
https://github.com/beetbox/beets/issues/1448
https://github.com/beetbox/beets/issues/1449
https://github.com/beetbox/beets/issues/1451
https://github.com/oldtopman
https://github.com/beetbox/beets/issues/1470
https://github.com/Somasis
https://github.com/beetbox/beets/issues/1472
https://github.com/beetbox/beets/issues/1475
https://github.com/beetbox/beets/issues/825
https://github.com/beetbox/beets/issues/1481
https://github.com/beetbox/beets/issues/1482
https://github.com/beetbox/beets/issues/1487
https://github.com/beetbox/beets/issues/1485
https://github.com/beetbox/beets/issues/1502
https://github.com/Somasis
https://github.com/beetbox/beets/issues/1512
https://github.com/JesseWeinstein
https://github.com/beetbox/beets/issues/1521
https://github.com/beetbox/beets/issues/1511
https://github.com/beetbox/beets/issues/1518
https://github.com/beetbox/beets/issues/496
https://github.com/beetbox/beets/issues/1361
http://bugs.python.org/issue16512
https://github.com/nathdwek
https://github.com/beetbox/beets/issues/1545

beets Documentation, Release 1.4.7

• Fix the group_albums importer mode so that it works correctly when files are not already in order by album.
#1550

• The fields command no longer separates built-in fields from plugin-provided ones. This distinction was
becoming increasingly unreliable.

• Duplicates Plugin: Fix a Unicode warning when paths contained non-ASCII characters. #1551

• FetchArt Plugin: Work around a urllib3 bug that could cause a crash. #1555 #1556

• When you edit the configuration file with beet config -e and the file does not exist, beets creates an empty
file before editing it. This fixes an error on OS X, where the open command does not work with non-existent
files. #1480

• Convert Plugin: Fix a problem with filename encoding on Windows under Python 3. #2515 #2516

1.6.14 1.3.13 (April 24, 2015)

This is a tiny bug-fix release. It copes with a dependency upgrade that broke beets. There are just two fixes:

• Fix compatibility with Jellyfish version 0.5.0.

• EmbedArt Plugin: In auto mode (the import hook), the plugin now respects the write config option under
import. If this is disabled, album art is no longer embedded on import in order to leave files untouched—in
effect, auto is implicitly disabled. #1427

1.6.15 1.3.12 (April 18, 2015)

This little update makes queries more powerful, sorts music more intelligently, and removes a performance bottleneck.
There’s an experimental new plugin for synchronizing metadata with music players.

Packagers should also note a new dependency in this version: the Jellyfish Python library makes our text comparisons
(a big part of the auto-tagging process) go much faster.

New features:

• Queries can now use “or” logic: if you use a comma to separate parts of a query, items and albums will match
either side of the comma. For example, beet ls foo , barwill get all the items matching foo or matching
bar. See Combining Keywords. #1423

• The autotagger’s matching algorithm is faster. We now use the Jellyfish library to compute string similarity,
which is better optimized than our hand-rolled edit distance implementation. #1389

• Sorting is now case insensitive by default. This means that artists will be sorted lexicographically regard-
less of case. For example, the artist alt-J will now properly sort before YACHT. (Previously, it would have
ended up at the end of the list, after all the capital-letter artists.) You can turn this new behavior off using the
sort_case_insensitive configuration option. See Sort Order. #1429

• An experimental new MetaSync Plugin lets you get metadata from your favorite music players, starting with
Amarok. #1386

• FetchArt Plugin: There are new settings to control what constitutes “acceptable” images. The minwidth option
constrains the minimum image width in pixels and the enforce_ratio option requires that images be square.
#1394

Little fixes and improvements:

• FetchArt Plugin: Remove a hard size limit when fetching from the Cover Art Archive.

• The output of the fields command is now sorted. Thanks to multikatt. #1402

1.6. Changelog 139

https://github.com/beetbox/beets/issues/1550
https://github.com/beetbox/beets/issues/1551
https://github.com/beetbox/beets/issues/1555
https://github.com/beetbox/beets/issues/1556
https://github.com/beetbox/beets/issues/1480
https://github.com/beetbox/beets/issues/2515
https://github.com/beetbox/beets/issues/2516
https://github.com/sunlightlabs/jellyfish
https://github.com/beetbox/beets/issues/1427
https://github.com/sunlightlabs/jellyfish
https://github.com/beetbox/beets/issues/1423
https://github.com/sunlightlabs/jellyfish
https://github.com/beetbox/beets/issues/1389
https://github.com/beetbox/beets/issues/1429
https://github.com/beetbox/beets/issues/1386
https://github.com/beetbox/beets/issues/1394
https://github.com/multikatt
https://github.com/beetbox/beets/issues/1402

beets Documentation, Release 1.4.7

• ReplayGain Plugin: Fix a number of issues with the new bs1770gain backend on Windows. Also, fix missing
debug output in import mode. #1398

• Beets should now be better at guessing the appropriate output encoding on Windows. (Specifically, the console
output encoding is guessed separately from the encoding for command-line arguments.) A bug was also fixed
where beets would ignore the locale settings and use UTF-8 by default. #1419

• Discogs Plugin: Better error handling when we can’t communicate with Discogs on setup. #1417

• ImportAdded Plugin: Fix a crash when importing singletons in-place. #1416

• Fuzzy Search Plugin: Fix a regression causing a crash in the last release. #1422

• Fix a crash when the importer cannot open its log file. Thanks to barsanuphe. #1426

• Fix an error when trying to write tags for items with flexible fields called date and original_date (which are not
built-in beets fields). #1404

1.6.16 1.3.11 (April 5, 2015)

In this release, we refactored the logging system to be more flexible and more useful. There are more granular levels of
verbosity, the output from plugins should be more consistent, and several kinds of logging bugs should be impossible
in the future.

There are also two new plugins: one for filtering the files you import and an evolved plugin for using album art as
directory thumbnails in file managers. There’s a new source for album art, and the importer now records the source of
match data. This is a particularly huge release—there’s lots more below.

There’s one big change with this release: Python 2.6 is no longer supported. You’ll need Python 2.7. Please trust us
when we say this let us remove a surprising number of ugly hacks throughout the code.

Major new features and bigger changes:

• There are now multiple levels of output verbosity. On the command line, you can make beets somewhat
verbose with -v or very verbose with -vv. For the importer especially, this makes the first verbose mode much
more manageable, while still preserving an option for overwhelmingly verbose debug output. #1244

• A new FileFilter Plugin lets you write regular expressions to automatically avoid importing certain files.
Thanks to mried. #1186

• A new Thumbnails Plugin generates cover-art thumbnails for album folders for Freedesktop.org-compliant
file managers. (This replaces the Freedesktop Plugin, which only worked with the Dolphin file manager.)

• ReplayGain Plugin: There is a new backend that uses the bs1770gain analysis tool. Thanks to jmwatte. #1343

• A new filesize field on items indicates the number of bytes in the file. #1291

• A new searchlimit configuration option allows you to specify how many search results you wish to see when
looking up releases at MusicBrainz during import. #1245

• The importer now records the data source for a match in a new flexible attribute data_source on items and
albums. #1311

• The colors used in the terminal interface are now configurable via the new config option colors, nested under
the option ui. (Also, the color config option has been moved from top-level to under ui. Beets will respect the
old color setting, but will warn the user with a deprecation message.) #1238

• FetchArt Plugin: There’s a new Wikipedia image source that uses DBpedia to find albums. Thanks to Tom
Jaspers. #1194

• In the config command, the output is now redacted by default. Sensitive information like passwords and API
keys is not included. The new --clear option disables redaction. #1376

140 Chapter 1. Contents

https://github.com/beetbox/beets/issues/1398
https://github.com/beetbox/beets/issues/1419
https://github.com/beetbox/beets/issues/1417
https://github.com/beetbox/beets/issues/1416
https://github.com/beetbox/beets/issues/1422
https://github.com/barsanuphe
https://github.com/beetbox/beets/issues/1426
https://github.com/beetbox/beets/issues/1404
https://github.com/beetbox/beets/issues/1244
https://github.com/mried
https://github.com/beetbox/beets/issues/1186
http://bs1770gain.sourceforge.net
https://github.com/jmwatte
https://github.com/beetbox/beets/issues/1343
https://github.com/beetbox/beets/issues/1291
https://github.com/beetbox/beets/issues/1245
https://github.com/beetbox/beets/issues/1311
https://github.com/beetbox/beets/issues/1238
https://github.com/beetbox/beets/issues/1194
https://github.com/beetbox/beets/issues/1376

beets Documentation, Release 1.4.7

You should probably also know about these core changes to the way beets works:

• As mentioned above, Python 2.6 is no longer supported.

• The tracktotal attribute is now a track-level field instead of an album-level one. This field stores the total
number of tracks on the album, or if the per_disc_numbering config option is set, the total number of tracks on
a particular medium (i.e., disc). The field was causing problems with that per_disc_numbering mode: different
discs on the same album needed different track totals. The field can now work correctly in either mode.

• To replace tracktotal as an album-level field, there is a new albumtotal computed attribute that provides
the total number of tracks on the album. (The per_disc_numbering option has no influence on this field.)

• The list_format_album and list_format_item configuration keys now affect (almost) every place where objects
are printed and logged. (Previously, they only controlled the list command and a few other scattered pieces.)
#1269

• Relatedly, the beet program now accept top-level options --format-item and --format-album before
any subcommand to control how items and albums are displayed. #1271

• list_format_album and list_format_album have respectively been renamed format_album and format_item. The
old names still work but each triggers a warning message. #1271

• Path queries are automatically triggered only if the path targeted by the query exists. Previously, just having a
slash somewhere in the query was enough, so beet ls AC/DC wouldn’t work to refer to the artist.

There are also lots of medium-sized features in this update:

• Duplicates Plugin: The command has a new --strict option that will only report duplicates if all attributes
are explicitly set. #1000

• Smart Playlist Plugin: Playlist updating should now be faster: the plugin detects, for each playlist, whether it
needs to be regenerated, instead of obliviously regenerating all of them. The splupdate command can now
also take additional parameters that indicate the names of the playlists to regenerate.

• Play Plugin: The command shows the output of the underlying player command and lets you interact with it.
#1321

• The summary shown to compare duplicate albums during import now displays the old and new filesizes. #1291

• LastGenre Plugin: Add comedy, humor, and stand-up as well as a longer list of classical music genre tags to the
built-in whitelist and canonicalization tree. #1206 #1239 #1240

• Web Plugin: Add support for cross-origin resource sharing for more flexible in-browser clients. Thanks to
Andre Miller. #1236 #1237

• MBSync Plugin: A new -f/--format option controls the output format when listing unrecognized items.
The output is also now more helpful by default. #1246

• FetchArt Plugin: A new option, -n, extracts the cover art of all matched albums into their respective directories.
Another new flag, -a, associates the extracted files with the albums in the database. #1261

• Info Plugin: A new option, -i, can display only a specified subset of properties. #1287

• The number of missing/unmatched tracks is shown during import. #1088

• Permissions Plugin: The plugin now also adjusts the permissions of the directories. (Previously, it only affected
files.) #1308 #1324

• FtInTitle Plugin: You can now configure the format that the plugin uses to add the artist to the title. Thanks to
amishb. #1377

And many little fixes and improvements:

• ReplayGain Plugin: Stop applying replaygain directly to source files when using the mp3gain backend. #1316

1.6. Changelog 141

https://github.com/beetbox/beets/issues/1269
https://github.com/beetbox/beets/issues/1271
https://github.com/beetbox/beets/issues/1271
https://github.com/beetbox/beets/issues/1000
https://github.com/beetbox/beets/issues/1321
https://github.com/beetbox/beets/issues/1291
https://github.com/beetbox/beets/issues/1206
https://github.com/beetbox/beets/issues/1239
https://github.com/beetbox/beets/issues/1240
https://github.com/beetbox/beets/issues/1236
https://github.com/beetbox/beets/issues/1237
https://github.com/beetbox/beets/issues/1246
https://github.com/beetbox/beets/issues/1261
https://github.com/beetbox/beets/issues/1287
https://github.com/beetbox/beets/issues/1088
https://github.com/beetbox/beets/issues/1308
https://github.com/beetbox/beets/issues/1324
https://github.com/amishb
https://github.com/beetbox/beets/issues/1377
https://github.com/beetbox/beets/issues/1316

beets Documentation, Release 1.4.7

• Path queries are case-sensitive on non-Windows OSes. #1165

• Lyrics Plugin: Silence a warning about insecure requests in the new MusixMatch backend. #1204

• Fix a crash when beet is invoked without arguments. #1205 #1207

• FetchArt Plugin: Do not attempt to import directories as album art. #1177 #1211

• MPDStats Plugin: Avoid double-counting some play events. #773 #1212

• Fix a crash when the importer deals with Unicode metadata in --pretend mode. #1214

• Smart Playlist Plugin: Fix album_query so that individual files are added to the playlist instead of directories.
#1225

• Remove the beatport plugin. Beatport has shut off public access to their API and denied our request for an
account. We have not heard from the company since 2013, so we are assuming access will not be restored.

• Incremental imports now (once again) show a “skipped N directories” message.

• EmbedArt Plugin: Handle errors in ImageMagick’s output. #1241

• Key Finder Plugin: Parse the underlying tool’s output more robustly. #1248

• EmbedArt Plugin: We now show a comprehensible error message when beet embedart -f FILE is given
a non-existent path. #1252

• Fix a crash when a file has an unrecognized image type tag. Thanks to Matthias Kiefer. #1260

• ImportFeeds Plugin and Smart Playlist Plugin: Automatically create parent directories for playlist files (instead
of crashing when the parent directory does not exist). #1266

• The write command no longer tries to “write” non-writable fields, such as the bitrate. #1268

• The error message when MusicBrainz is not reachable on the network is now much clearer. Thanks to Tom
Jaspers. #1190 #1272

• Improve error messages when parsing query strings with shlex. #1290

• EmbedArt Plugin: Fix a crash that occured when used together with the check plugin. #1241

• Scrub Plugin: Log an error instead of stopping when the beet scrub command cannot write a file. Also,
avoid problems on Windows with Unicode filenames. #1297

• Discogs Plugin: Handle and log more kinds of communication errors. #1299 #1305

• LastGenre Plugin: Bugs in the pylast library can no longer crash beets.

• Convert Plugin: You can now configure the temporary directory for conversions. Thanks to autochthe. #1382
#1383

• Rewrite Plugin: Fix a regression that prevented the plugin’s rewriting from applying to album-level fields like
$albumartist. #1393

• Play Plugin: The plugin now sorts items according to the configuration in album mode.

• FetchArt Plugin: The name for extracted art files is taken from the art_filename configuration option.
#1258

• When there’s a parse error in a query (for example, when you type a malformed date in a date query), beets now
stops with an error instead of silently ignoring the query component.

For developers:

• The database_change event now sends the item or album that is subject to a change.

• The OptionParser is now a CommonOptionsParser that offers facilities for adding usual options
(--album, --path and --format). See Add Commands to the CLI. #1271

142 Chapter 1. Contents

https://github.com/beetbox/beets/issues/1165
https://github.com/beetbox/beets/issues/1204
https://github.com/beetbox/beets/issues/1205
https://github.com/beetbox/beets/issues/1207
https://github.com/beetbox/beets/issues/1177
https://github.com/beetbox/beets/issues/1211
https://github.com/beetbox/beets/issues/773
https://github.com/beetbox/beets/issues/1212
https://github.com/beetbox/beets/issues/1214
https://github.com/beetbox/beets/issues/1225
http://www.beatport.com/
https://github.com/beetbox/beets/issues/1241
https://github.com/beetbox/beets/issues/1248
https://github.com/beetbox/beets/issues/1252
https://github.com/beetbox/beets/issues/1260
https://github.com/beetbox/beets/issues/1266
https://github.com/beetbox/beets/issues/1268
https://github.com/beetbox/beets/issues/1190
https://github.com/beetbox/beets/issues/1272
https://github.com/beetbox/beets/issues/1290
https://github.com/beetbox/beets/issues/1241
https://github.com/beetbox/beets/issues/1297
https://github.com/beetbox/beets/issues/1299
https://github.com/beetbox/beets/issues/1305
https://github.com/autochthe
https://github.com/beetbox/beets/issues/1382
https://github.com/beetbox/beets/issues/1383
https://github.com/beetbox/beets/issues/1393
https://github.com/beetbox/beets/issues/1258
https://github.com/beetbox/beets/issues/1271

beets Documentation, Release 1.4.7

• The logging system in beets has been overhauled. Plugins now each have their own logger, which helps by au-
tomatically adjusting the verbosity level in import mode and by prefixing the plugin’s name. Logging levels are
dynamically set when a plugin is called, depending on how it is called (import stage, event or direct command).
Finally, logging calls can (and should!) use modern {}-style string formatting lazily. See Logging in the plugin
API docs.

• A new import_task_created event lets you manipulate import tasks immediately after they are initialized.
It’s also possible to replace the originally created tasks by returning new ones using this event.

1.6.17 1.3.10 (January 5, 2015)

This version adds a healthy helping of new features and fixes a critical MPEG-4–related bug. There are more
lyrics sources, there new plugins for managing permissions and integrating with Plex, and the importer has a new
--pretend flag that shows which music would be imported.

One backwards-compatibility note: the Lyrics Plugin now requires the requests library. If you use this plugin, you will
need to install the library by typing pip install requests or the equivalent for your OS.

Also, as an advance warning, this will be one of the last releases to support Python 2.6. If you have a system that
cannot run Python 2.7, please consider upgrading soon.

The new features are:

• A new Permissions Plugin makes it easy to fix permissions on music files as they are imported. Thanks to
xsteadfastx. #1098

• A new PlexUpdate Plugin lets you notify a Plex server when the database changes. Thanks again to xsteadfastx.
#1120

• The import command now has a --pretend flag that lists the files that will be imported. Thanks to mried.
#1162

• Lyrics Plugin: Add Musixmatch source and introduce a new sources config option that lets you choose
exactly where to look for lyrics and in which order.

• Lyrics Plugin: Add Brazilian and Spanish sources to Google custom search engine.

• Add a warning when importing a directory that contains no music. #1116 #1127

• Zero Plugin: Can now remove embedded images. #1129 #1100

• The config command can now be used to edit the configuration even when it has syntax errors. #1123 #1128

• Lyrics Plugin: Added a new force config option. #1150

As usual, there are loads of little fixes and improvements:

• Fix a new crash with the latest version of Mutagen (1.26).

• Lyrics Plugin: Avoid fetching truncated lyrics from the Google backed by merging text blocks separated by
empty <div> tags before scraping.

• We now print a better error message when the database file is corrupted.

• Discogs Plugin: Only prompt for authentication when running the import command. #1123

• When deleting fields with the modify command, do not crash when the field cannot be removed (i.e., when it
does not exist, when it is a built-in field, or when it is a computed field). #1124

• The deprecated echonest_tempo plugin has been removed. Please use the echonest plugin instead.

• echonest plugin: Fingerprint-based lookup has been removed in accordance with API changes. #1121

• echonest plugin: Avoid a crash when the song has no duration information. #896

1.6. Changelog 143

https://plex.tv/
http://www.python-requests.org/
https://github.com/xsteadfastx
https://github.com/beetbox/beets/issues/1098
https://plex.tv/
https://github.com/beetbox/beets/issues/1120
https://github.com/mried
https://github.com/beetbox/beets/issues/1162
https://www.musixmatch.com/
https://github.com/beetbox/beets/issues/1116
https://github.com/beetbox/beets/issues/1127
https://github.com/beetbox/beets/issues/1129
https://github.com/beetbox/beets/issues/1100
https://github.com/beetbox/beets/issues/1123
https://github.com/beetbox/beets/issues/1128
https://github.com/beetbox/beets/issues/1150
https://github.com/beetbox/beets/issues/1123
https://github.com/beetbox/beets/issues/1124
http://developer.echonest.com/forums/thread/3650
https://github.com/beetbox/beets/issues/1121
https://github.com/beetbox/beets/issues/896

beets Documentation, Release 1.4.7

• Lyrics Plugin: Avoid a crash when retrieving non-ASCII lyrics from the Google backend. #1135 #1136

• Smart Playlist Plugin: Sort specifiers are now respected in queries. Thanks to djl. #1138 #1137

• FtInTitle Plugin and Lyrics Plugin: Featuring artists can now be detected when they use the Spanish word con.
#1060 #1143

• MusicBrainz Collection Plugin: Fix an “HTTP 400” error caused by a change in the MusicBrainz API. #1152

• The % and _ characters in path queries do not invoke their special SQL meaning anymore. #1146

• Convert Plugin: Command-line argument construction now works on Windows. Thanks to mluds. #1026 #1157
#1158

• EmbedArt Plugin: Fix an erroneous missing-art error on Windows. Thanks to mluds. #1163

• ImportAdded Plugin: Now works with in-place and symlinked imports. #1170

• FtInTitle Plugin: The plugin is now quiet when it runs as part of the import process. Thanks to Freso. #1176
#1172

• FtInTitle Plugin: Fix weird behavior when the same artist appears twice in the artist string. Thanks to Marc
Addeo. #1179 #1181

• LastGenre Plugin: Match songs more robustly when they contain dashes. Thanks to djl. #1156

• The config command can now use $EDITOR variables with arguments.

1.6.18 1.3.9 (November 17, 2014)

This release adds two new standard plugins to beets: one for synchronizing Last.fm listening data and one for inte-
grating with Linux desktops. And at long last, imports can now create symbolic links to music files instead of copying
or moving them. We also gained the ability to search for album art on the iTunes Store and a new way to compute
ReplayGain levels.

The major new features are:

• A new LastImport Plugin lets you download your play count data from Last.fm into a flexible attribute. Thanks
to Rafael Bodill.

• A new Freedesktop Plugin creates metadata files for Freedesktop.org–compliant file managers. Thanks to kero-
baros. #1056, #707

• A new link option in the import section creates symbolic links during import instead of moving or copying.
Thanks to Rovanion Luckey. #710, #114

• FetchArt Plugin: You can now search for art on the iTunes Store. There’s also a new sources config option
that lets you choose exactly where to look for images and in which order.

• ReplayGain Plugin: A new Python Audio Tools backend was added. Thanks to Francesco Rubino. #1070

• EmbedArt Plugin: You can now automatically check that new art looks similar to existing art—ensuring that
you only get a better “version” of the art you already have. See Image Similarity.

• FtInTitle Plugin: The plugin now runs automatically on import. To disable this, unset the auto config flag.

There are also core improvements and other substantial additions:

• The media attribute is now a track-level field instead of an album-level one. This field stores the delivery
mechanism for the music, so in its album-level incarnation, it could not represent heterogeneous releases—for
example, an album consisting of a CD and a DVD. Now, tracks accurately indicate the media they appear on.
Thanks to Heinz Wiesinger.

144 Chapter 1. Contents

https://github.com/beetbox/beets/issues/1135
https://github.com/beetbox/beets/issues/1136
https://github.com/djl
https://github.com/beetbox/beets/issues/1138
https://github.com/beetbox/beets/issues/1137
https://github.com/beetbox/beets/issues/1060
https://github.com/beetbox/beets/issues/1143
https://github.com/beetbox/beets/issues/1152
https://github.com/beetbox/beets/issues/1146
https://github.com/mluds
https://github.com/beetbox/beets/issues/1026
https://github.com/beetbox/beets/issues/1157
https://github.com/beetbox/beets/issues/1158
https://github.com/mluds
https://github.com/beetbox/beets/issues/1163
https://github.com/beetbox/beets/issues/1170
https://github.com/Freso
https://github.com/beetbox/beets/issues/1176
https://github.com/beetbox/beets/issues/1172
https://github.com/beetbox/beets/issues/1179
https://github.com/beetbox/beets/issues/1181
https://github.com/djl
https://github.com/beetbox/beets/issues/1156
https://github.com/kerobaros
https://github.com/kerobaros
https://github.com/beetbox/beets/issues/1056
https://github.com/beetbox/beets/issues/707
https://github.com/beetbox/beets/issues/710
https://github.com/beetbox/beets/issues/114
https://github.com/beetbox/beets/issues/1070

beets Documentation, Release 1.4.7

• Re-imports of your existing music (see Reimporting) now preserve its added date and flexible attributes. Thanks
to Stig Inge Lea Bjørnsen.

• Slow queries, such as those over flexible attributes, should now be much faster when used with certain com-
mands—notably, the Play Plugin.

• BPD Plugin: Add a new configuration option for setting the default volume. Thanks to IndiGit.

• EmbedArt Plugin: A new ifempty config option lets you only embed album art when no album art is present.
Thanks to kerobaros.

• Discogs Plugin: Authenticate with the Discogs server. The plugin now requires a Discogs account due to new
API restrictions. Thanks to multikatt. #1027, #1040

And countless little improvements and fixes:

• Standard cover art in APEv2 metadata is now supported. Thanks to Matthias Kiefer. #1042

• Convert Plugin: Avoid a crash when embedding cover art fails.

• MPDStats Plugin: Fix an error on start (introduced in the previous version). Thanks to Zach Denton.

• Convert Plugin: The --yes command-line flag no longer expects an argument.

• Play Plugin: Remove the temporary .m3u file after sending it to the player.

• The importer no longer tries to highlight partial differences in numeric quantities (track numbers and durations),
which was often confusing.

• Date-based queries that are malformed (not parse-able) no longer crash beets and instead fail silently.

• Duplicates Plugin: Emit an error when the checksum config option is set incorrectly.

• The migration from pre-1.1, non-YAML configuration files has been removed. If you need to upgrade an old
config file, use an older version of beets temporarily.

• Discogs Plugin: Recover from HTTP errors when communicating with the Discogs servers. Thanks to Dustin
Rodriguez.

• EmbedArt Plugin: Do not log “embedding album art into. . . ” messages during the import process.

• Fix a crash in the autotagger when files had only whitespace in their metadata.

• Play Plugin: Fix a potential crash when the command outputs special characters. #1041

• Web Plugin: Queries typed into the search field are now treated as separate query components. #1045

• Date tags that use slashes instead of dashes as separators are now interpreted correctly. And WMA (ASF) files
now map the comments field to the “Description” tag (in addition to “WM/Comments”). Thanks to Matthias
Kiefer. #1043

• EmbedArt Plugin: Avoid resizing the image multiple times when embedding into an album. Thanks to kero-
baros. #1028, #1036

• Discogs Plugin: Avoid a situation where a trailing comma could be appended to some artist names. #1049

• The output of the stats command is slightly different: the approximate size is now marked as such, and the total
number of seconds only appears in exact mode.

• Convert Plugin: A new copy_album_art option puts images alongside converted files. Thanks to Ángel
Alonso. #1050, #1055

• There is no longer a “conflict” between two plugins that declare the same field with the same type. Thanks to
Peter Schnebel. #1059 #1061

• Chromaprint/Acoustid Plugin: Limit the number of releases and recordings fetched as the result of an Acoustid
match to avoid extremely long processing times for very popular music. #1068

1.6. Changelog 145

https://github.com/multikatt
https://github.com/beetbox/beets/issues/1027
https://github.com/beetbox/beets/issues/1040
https://github.com/beetbox/beets/issues/1042
https://github.com/beetbox/beets/issues/1041
https://github.com/beetbox/beets/issues/1045
https://github.com/beetbox/beets/issues/1043
https://github.com/kerobaros
https://github.com/kerobaros
https://github.com/beetbox/beets/issues/1028
https://github.com/beetbox/beets/issues/1036
https://github.com/beetbox/beets/issues/1049
https://github.com/beetbox/beets/issues/1050
https://github.com/beetbox/beets/issues/1055
https://github.com/beetbox/beets/issues/1059
https://github.com/beetbox/beets/issues/1061
https://github.com/beetbox/beets/issues/1068

beets Documentation, Release 1.4.7

• Fix an issue where modifying an album’s field without actually changing it would not update the corresponding
tracks to bring differing tracks back in line with the album. #856

• echonest plugin: When communicating with the Echo Nest servers fails repeatedly, log an error instead of
exiting. #1096

• Lyrics Plugin: Avoid an error when the Google source returns a result without a title. Thanks to Alberto Leal.
#1097

• Importing an archive will no longer leave temporary files behind in /tmp. Thanks to multikatt. #1067, #1091

1.6.19 1.3.8 (September 17, 2014)

This release has two big new chunks of functionality. Queries now support sorting and user-defined fields can now
have types.

If you want to see all your songs in reverse chronological order, just type beet list year-. It couldn’t be easier.
For details, see Sort Order.

Flexible field types mean that some functionality that has previously only worked for built-in fields, like range queries,
can now work with plugin- and user-defined fields too. For starters, the echonest plugin and MPDStats Plugin now
mark the types of the fields they provide—so you can now say, for example, beet ls liveness:0.5..1.5 for
the Echo Nest “liveness” attribute. The Types Plugin makes it easy to specify field types in your config file.

One upgrade note: if you use the Discogs Plugin, you will need to upgrade the Discogs client library to use this
version. Just type pip install -U discogs-client.

Other new features:

• Info Plugin: Target files can now be specified through library queries (in addition to filenames). The
--library option prints library fields instead of tags. Multiple files can be summarized together with the
new --summarize option.

• MusicBrainz Collection Plugin: A new option lets you automatically update your collection on import. Thanks
to Olin Gay.

• Convert Plugin: A new never_convert_lossy_files option can prevent lossy transcoding. Thanks to
Simon Kohlmeyer.

• Convert Plugin: A new --yes command-line flag skips the confirmation.

Still more fixes and little improvements:

• Invalid state files don’t crash the importer.

• Lyrics Plugin: Only strip featured artists and parenthesized title suffixes if no lyrics for the original artist and
title were found.

• Fix a crash when reading some files with missing tags.

• Discogs Plugin: Compatibility with the new 2.0 version of the discogs_client Python library. If you were using
the old version, you wil need to upgrade to the latest version of the library to use the correspondingly new
version of the plugin (e.g., with pip install -U discogs-client). Thanks to Andriy Kohut.

• Fix a crash when writing files that can’t be read. Thanks to Jocelyn De La Rosa.

• The stats command now counts album artists. The album count also more accurately reflects the number of
albums in the database.

• Convert Plugin: Avoid crashes when tags cannot be written to newly converted files.

• Formatting templates with item data no longer confusingly shows album-level data when the two are inconsis-
tent.

146 Chapter 1. Contents

https://github.com/beetbox/beets/issues/856
https://github.com/beetbox/beets/issues/1096
https://github.com/beetbox/beets/issues/1097
https://github.com/multikatt
https://github.com/beetbox/beets/issues/1067
https://github.com/beetbox/beets/issues/1091
https://github.com/discogs/discogs_client

beets Documentation, Release 1.4.7

• Resuming imports and beginning incremental imports should now be much faster when there is a lot of
previously-imported music to skip.

• Lyrics Plugin: Remove <script> tags from scraped lyrics. Thanks to Bombardment.

• Play Plugin: Add a relative_to config option. Thanks to BrainDamage.

• Fix a crash when a MusicBrainz release has zero tracks.

• The --version flag now works as an alias for the version command.

• LastGenre Plugin: Remove some unhelpful genres from the default whitelist. Thanks to gwern.

• ImportFeeds Plugin: A new echo output mode prints files’ paths to standard error. Thanks to robotanarchy.

• ReplayGain Plugin: Restore some error handling when mp3gain output cannot be parsed. The verbose log
now contains the bad tool output in this case.

• Convert Plugin: Fix filename extensions when converting automatically.

• The write plugin event allows plugins to change the tags that are written to a media file.

• Zero Plugin: Do not delete database values; only media file tags are affected.

1.6.20 1.3.7 (August 22, 2014)

This release of beets fixes all the bugs, and you can be confident that you will never again find any bugs in beets, ever.
It also adds support for plain old AIFF files and adds three more plugins, including a nifty one that lets you measure
a song’s tempo by tapping out the beat on your keyboard. The importer deals more elegantly with duplicates and you
can broaden your cover art search to the entire web with Google Image Search.

The big new features are:

• Support for AIFF files. Tags are stored as ID3 frames in one of the file’s IFF chunks. Thanks to Evan Purkhiser
for contributing support to Mutagen.

• The new ImportAdded Plugin reads files’ modification times to set their “added” date. Thanks to Stig Inge Lea
Bjørnsen.

• The new BPM Plugin lets you manually measure the tempo of a playing song. Thanks to aroquen.

• The new Spotify Plugin generates playlists for your Spotify account. Thanks to Olin Gay.

• A new required configuration option for the importer skips matches that are missing certain data. Thanks to
oprietop.

• When the importer detects duplicates, it now shows you some details about the potentially-replaced music so
you can make an informed decision. Thanks to Howard Jones.

• FetchArt Plugin: You can now optionally search for cover art on Google Image Search. Thanks to Lemutar.

• A new asciify_paths configuration option replaces all non-ASCII characters in paths.

And the multitude of little improvements and fixes:

• Compatibility with the latest version of Mutagen, 1.23.

• Web Plugin: Lyrics now display readably with correct line breaks. Also, the detail view scrolls to reveal all of
the lyrics. Thanks to Meet Udeshi.

• Play Plugin: The command config option can now contain arguments (rather than just an executable). Thanks
to Alessandro Ghedini.

• Fix an error when using the modify command to remove a flexible attribute. Thanks to Pierre Rust.

1.6. Changelog 147

https://bitbucket.org/lazka/mutagen
https://www.spotify.com/
https://bitbucket.org/lazka/mutagen

beets Documentation, Release 1.4.7

• Info Plugin: The command now shows audio properties (e.g., bitrate) in addition to metadata. Thanks Alessan-
dro Ghedini.

• Avoid a crash on Windows when writing to files with special characters in their names.

• Play Plugin: Playing albums now generates filenames by default (as opposed to directories) for better compati-
bility. The use_folders option restores the old behavior. Thanks to Lucas Duailibe.

• Fix an error when importing an empty directory with the --flat option.

• MPDStats Plugin: The last song in a playlist is now correctly counted as played. Thanks to Johann Klähn.

• Zero Plugin: Prevent accidental nulling of dangerous fields (IDs and paths). Thanks to brunal.

• The remove command now shows the paths of files that will be deleted. Thanks again to brunal.

• Don’t display changes for fields that are not in the restricted field set. This fixes write showing changes for fields
that are not written to the file.

• The write command avoids displaying the item name if there are no changes for it.

• When using both the Convert Plugin and the Scrub Plugin, avoid scrubbing the source file of conversions. (Fix
a regression introduced in the previous release.)

• ReplayGain Plugin: Logging is now quieter during import. Thanks to Yevgeny Bezman.

• FetchArt Plugin: When loading art from the filesystem, we now prioritize covers with more keywords in them.
This means that cover-front.jpg will now be taken before cover-back.jpg because it contains two
keywords rather than one. Thanks to Fabrice Laporte.

• LastGenre Plugin: Remove duplicates from canonicalized genre lists. Thanks again to Fabrice Laporte.

• The importer now records its progress when skipping albums. This means that incremental imports will no
longer try to import albums again after you’ve chosen to skip them, and erroneous invitations to resume “inter-
rupted” imports should be reduced. Thanks to jcassette.

• Bucket Plugin: You can now customize the definition of alphanumeric “ranges” using regular expressions. And
the heuristic for detecting years has been improved. Thanks to sotho.

• Already-imported singleton tracks are skipped when resuming an import.

• Chromaprint/Acoustid Plugin: A new auto configuration option disables fingerprinting on import. Thanks to
ddettrittus.

• Convert Plugin: A new --format option to can select the transcoding preset from the command-line.

• Convert Plugin: Transcoding presets can now omit their filename extensions (extensions default to the name of
the preset).

• Convert Plugin: A new --pretend option lets you preview the commands the plugin will execute without
actually taking any action. Thanks to Dietrich Daroch.

• Fix a crash when a float-valued tag field only contained a + or - character.

• Fixed a regression in the core that caused the Scrub Plugin not to work in auto mode. Thanks to Harry Khanna.

• The write command now has a --force flag. Thanks again to Harry Khanna.

• MBSync Plugin: Track alignment now works with albums that have multiple copies of the same recording.
Thanks to Rui Gonçalves.

148 Chapter 1. Contents

beets Documentation, Release 1.4.7

1.6.21 1.3.6 (May 10, 2014)

This is primarily a bugfix release, but it also brings two new plugins: one for playing music in desktop players and
another for organizing your directories into “buckets.” It also brings huge performance optimizations to queries—your
beet ls commands will now go much faster.

New features:

• The new Play Plugin lets you start your desktop music player with the songs that match a query. Thanks to
David Hamp-Gonsalves.

• The new Bucket Plugin provides a %bucket{} function for path formatting to generate folder names repre-
senting ranges of years or initial letter. Thanks to Fabrice Laporte.

• Item and album queries are much faster.

• FtInTitle Plugin: A new option lets you remove featured artists entirely instead of moving them to the title.
Thanks to SUTJael.

And those all-important bug fixes:

• MBSync Plugin: Fix a regression in 1.3.5 that broke the plugin entirely.

• Shell completion now searches more common paths for its bash_completion dependency.

• Fix encoding-related logging errors in Convert Plugin and ReplayGain Plugin.

• ReplayGain Plugin: Suppress a deprecation warning emitted by later versions of PyGI.

• Fix a crash when reading files whose iTunes SoundCheck tags contain non-ASCII characters.

• The %if{} template function now appropriately interprets the condition as false when it contains the string
“false”. Thanks to Ayberk Yilmaz.

• Convert Plugin: Fix conversion for files that include a video stream by ignoring it. Thanks to brunal.

• FetchArt Plugin: Log an error instead of crashing when tag manipulation fails.

• Convert Plugin: Log an error instead of crashing when embedding album art fails.

• Convert Plugin: Embed cover art into converted files. Previously they were embedded into the source files.

• New plugin event: before_item_moved. Thanks to Robert Speicher.

1.6.22 1.3.5 (April 15, 2014)

This is a short-term release that adds some great new stuff to beets. There’s support for tracking and calculating
musical keys, the ReplayGain plugin was expanded to work with more music formats via GStreamer, we can now
import directly from compressed archives, and the lyrics plugin is more robust.

One note for upgraders and packagers: this version of beets has a new dependency in enum34, which is a backport of
the new enum standard library module.

The major new features are:

• Beets can now import zip, tar, and rar archives. Just type beet import music.zip to have beets trans-
parently extract the files to import.

• ReplayGain Plugin: Added support for calculating ReplayGain values with GStreamer as well the mp3gain
program. This enables ReplayGain calculation for any audio format. Thanks to Yevgeny Bezman.

• Lyrics Plugin: Lyrics should now be found for more songs. Searching is now sensitive to featured artists
and parenthesized title suffixes. When a song has multiple titles, lyrics from all the named songs are now
concatenated. Thanks to Fabrice Laporte and Paul Phillips.

1.6. Changelog 149

https://pypi.python.org/pypi/enum34
https://docs.python.org/3.4/library/enum.html

beets Documentation, Release 1.4.7

In particular, a full complement of features for supporting musical keys are new in this release:

• A new initial_key field is available in the database and files’ tags. You can set the field manually using a
command like beet modify initial_key=Am.

• The echonest plugin sets the initial_key field if the data is available.

• A new Key Finder Plugin runs a command-line tool to get the key from audio data and store it in the initial_key
field.

There are also many bug fixes and little enhancements:

• echonest plugin: Truncate files larger than 50MB before uploading for analysis.

• FetchArt Plugin: Fix a crash when the server does not specify a content type. Thanks to Lee Reinhardt.

• Convert Plugin: The --keep-new flag now works correctly and the library includes the converted item.

• The importer now logs a message instead of crashing when errors occur while opening the files to be imported.

• EmbedArt Plugin: Better error messages in exceptional conditions.

• Silenced some confusing error messages when searching for a non-MusicBrainz ID. Using an invalid ID (of
any kind—Discogs IDs can be used there too) at the “Enter ID:” importer prompt now just silently returns no
results. More info is in the verbose logs.

• MBSync Plugin: Fix application of album-level metadata. Due to a regression a few releases ago, only track-
level metadata was being updated.

• On Windows, paths on network shares (UNC paths) no longer cause “invalid filename” errors.

• ReplayGain Plugin: Fix crashes when attempting to log errors.

• The modify command can now accept query arguments that contain = signs. An argument is considered a query
part when a : appears before any =s. Thanks to mook.

1.6.23 1.3.4 (April 5, 2014)

This release brings a hodgepodge of medium-sized conveniences to beets. A new config command manages your
configuration, we now have bash completion, and the modify command can delete attributes. There are also some
significant performance optimizations to the autotagger’s matching logic.

One note for upgraders: if you use the FetchArt Plugin, it has a new dependency, the requests module.

New stuff:

• Added a config command to manage your configuration. It can show you what you currently have in your
config file, point you at where the file should be, or launch your text editor to let you modify the file. Thanks to
geigerzaehler.

• Beets now ships with a shell command completion script! See Shell Completion. Thanks to geigerzaehler.

• The modify command now allows removing flexible attributes. For example, beet modify
artist:beatles oldies! deletes the oldies attribute from matching items. Thanks to brilnius.

• Internally, beets has laid the groundwork for supporting multi-valued fields. Thanks to geigerzaehler.

• The importer interface now shows the URL for MusicBrainz matches. Thanks to johtso.

• Smart Playlist Plugin: Playlists can now be generated from multiple queries (combined with “or” logic). Album-
level queries are also now possible and automatic playlist regeneration can now be disabled. Thanks to brilnius.

• echonest plugin: Echo Nest similarity now weights the tempo in better proportion to other metrics. Also,
options were added to specify custom thresholds and output formats. Thanks to Adam M.

150 Chapter 1. Contents

http://www.python-requests.org/

beets Documentation, Release 1.4.7

• Added the after_write plugin event.

• LastGenre Plugin: Separator in genre lists can now be configured. Thanks to brilnius.

• We now only use “primary” aliases for artist names from MusicBrainz. This eliminates some strange naming
that could occur when the languages config option was set. Thanks to Filipe Fortes.

• The performance of the autotagger’s matching mechanism is vastly improved. This should be noticeable when
matching against very large releases such as box sets.

• The import command can now accept individual files as arguments even in non-singleton mode. Files are
imported as one-track albums.

Fixes:

• Error messages involving paths no longer escape non-ASCII characters (for legibility).

• Fixed a regression that made it impossible to use the modify command to add new flexible fields. Thanks to
brilnius.

• echonest plugin: Avoid crashing when the audio analysis fails. Thanks to Pedro Silva.

• Duplicates Plugin: Fix checksumming command execution for files with quotation marks in their names.
Thanks again to Pedro Silva.

• Fix a crash when importing with both of the group_albums and incremental options enabled. Thanks to geigerza-
ehler.

• Give a sensible error message when BEETSDIR points to a file. Thanks again to geigerzaehler.

• Fix a crash when reading WMA files whose boolean-valued fields contain strings. Thanks to johtso.

• FetchArt Plugin: The plugin now sends “beets” as the User-Agent when making scraping requests. This helps
resolve some blocked requests. The plugin now also depends on the requests Python library.

• The write command now only shows the changes to fields that will actually be written to a file.

• Duplicates Plugin: Spurious reports are now avoided for tracks with missing values (e.g., no MBIDs). Thanks
to Pedro Silva.

• The default replace sanitation options now remove leading whitespace by default. Thanks to brilnius.

• ImportFeeds Plugin: Fix crash when importing albums containing / with the m3u_multi format.

• Avoid crashing on Mutagen bugs while writing files’ tags.

• Convert Plugin: Display a useful error message when the FFmpeg executable can’t be found.

1.6.24 1.3.3 (February 26, 2014)

Version 1.3.3 brings a bunch changes to how item and album fields work internally. Along with laying the groundwork
for some great things in the future, this brings a number of improvements to how you interact with beets. Here’s what’s
new with fields in particular:

• Plugin-provided fields can now be used in queries. For example, if you use the Inline Plugin to define a
field called era, you can now filter your library based on that field by typing something like beet list
era:goldenage.

• Album-level flexible attributes and plugin-provided attributes can now be used in path formats (and other item-
level templates).

• Date-based queries are now possible. Try getting every track you added in February 2014 with beet ls
added:2014-02 or in the whole decade with added:2010... Thanks to Stig Inge Lea Bjørnsen.

1.6. Changelog 151

http://www.python-requests.org/

beets Documentation, Release 1.4.7

• The modify command is now better at parsing and formatting fields. You can assign to boolean fields like comp,
for example, using either the words “true” or “false” or the numerals 1 and 0. Any boolean-esque value is
normalized to a real boolean. The update and write commands also got smarter at formatting and colorizing
changes.

For developers, the short version of the story is that Item and Album objects provide uniform access across fixed,
flexible, and computed attributes. You can write item.foo to access the foo field without worrying about where
the data comes from.

Unrelated new stuff:

• The importer has a new interactive option (G for “Group albums”), command-line flag (--group-albums),
and config option (group_albums) that lets you split apart albums that are mixed together in a single directory.
Thanks to geigerzaehler.

• A new --config command-line option lets you specify an additional configuration file. This option combines
config settings with your default config file. (As part of this change, the BEETSDIR environment variable no
longer combines—it replaces your default config file.) Thanks again to geigerzaehler.

• IHate Plugin: The plugin’s configuration interface was overhauled. Its configuration is now much simpler—it
uses beets queries instead of an ad-hoc per-field configuration. This is backwards-incompatible—if you use this
plugin, you will need to update your configuration. Thanks to BrainDamage.

Other little fixes:

• echonest plugin: Tempo (BPM) is now always stored as an integer. Thanks to Heinz Wiesinger.

• Fix Python 2.6 compatibility in some logging statements in Chromaprint/Acoustid Plugin and LastGenre Plugin.

• Prevent some crashes when things go really wrong when writing file metadata at the end of the import process.

• New plugin events: item_removed (thanks to Romuald Conty) and item_copied (thanks to Stig Inge Lea
Bjørnsen).

• The pluginpath config option can now point to the directory containing plugin code. (Previously, it awk-
wardly needed to point at a directory containing a beetsplug directory, which would then contain your code.
This is preserved as an option for backwards compatibility.) This change should also work around a long-
standing issue when using pluginpath when beets is installed using pip. Many thanks to geigerzaehler.

• Web Plugin: The /item/ and /album/ API endpoints now produce full details about albums and items, not
just lists of IDs. Thanks to geigerzaehler.

• Fix a potential crash when using image resizing with the FetchArt Plugin or EmbedArt Plugin without Im-
ageMagick installed.

• Also, when invoking convert for image resizing fails, we now log an error instead of crashing.

• FetchArt Plugin: The beet fetchart command can now associate local images with albums (unless
--force is provided). Thanks to brilnius.

• FetchArt Plugin: Command output is now colorized. Thanks again to brilnius.

• The modify command avoids writing files and committing to the database when nothing has changed. Thanks
once more to brilnius.

• The importer now uses the album artist field when guessing existing metadata for albums (rather than just the
track artist field). Thanks to geigerzaehler.

• FromFilename Plugin: Fix a crash when a filename contained only a track number (e.g., 02.mp3).

• Convert Plugin: Transcoding should now work on Windows.

• Duplicates Plugin: The move and copy destination arguments are now treated as directories. Thanks to Pedro
Silva.

152 Chapter 1. Contents

beets Documentation, Release 1.4.7

• The modify command now skips confirmation and prints a message if no changes are necessary. Thanks to
brilnius.

• FetchArt Plugin: When using the remote_priority config option, local image files are no longer com-
pletely ignored.

• echonest plugin: Fix an issue causing the plugin to appear twice in the output of the beet version
command.

• LastGenre Plugin: Fix an occasional crash when no tag weight was returned by Last.fm.

• MPDStats Plugin: Restore the last_played field. Thanks to Johann Klähn.

• The modify command’s output now clearly shows when a file has been deleted.

• Album art in files with Vorbis Comments is now marked with the “front cover” type. Thanks to Jason Lefley.

1.6.25 1.3.2 (December 22, 2013)

This update brings new plugins for fetching acoustic metrics and listening statistics, many more options for the dupli-
cate detection plugin, and flexible options for fetching multiple genres.

The “core” of beets gained a new built-in command: beet write updates the metadata tags for files, bringing them back
into sync with your database. Thanks to Heinz Wiesinger.

We added some plugins and overhauled some existing ones:

• The new echonest plugin plugin can fetch a wide range of acoustic attributes from The Echo Nest,
including the “speechiness” and “liveness” of each track. The new plugin supersedes an older version
(echonest_tempo) that only fetched the BPM field. Thanks to Pedro Silva and Peter Schnebel.

• The Duplicates Plugin got a number of new features, thanks to Pedro Silva:

– The keys option lets you specify the fields used detect duplicates.

– You can now use checksumming (via an external command) to find duplicates instead of metadata via the
checksum option.

– The plugin can perform actions on the duplicates it find. The new copy, move, delete,
delete_file, and tag options perform those actions.

• The new MPDStats Plugin collects statistics about your listening habits from MPD. Thanks to Peter Schnebel
and Johann Klähn.

• LastGenre Plugin: The new multiple option has been replaced with the count option, which lets you limit
the number of genres added to your music. (No more thousand-character genre fields!) Also, the min_weight
field filters out nonsense tags to make your genres more relevant. Thanks to Peter Schnebel and rashley60.

• Lyrics Plugin: A new --force option optionally re-downloads lyrics even when files already have them.
Thanks to Bitdemon.

As usual, there are also innumerable little fixes and improvements:

• When writing ID3 tags for ReplayGain normalization, tags are written with both upper-case and lower-case
TXXX frame descriptions. Previous versions of beets used only the upper-case style, which seems to be more
standard, but some players (namely, Quod Libet and foobar2000) seem to only use lower-case names.

• Missing Plugin: Avoid a possible error when an album’s tracktotal field is missing.

• FtInTitle Plugin: Fix an error when the sort artist is missing.

• echonest_tempo: The plugin should now match songs more reliably (i.e., fewer “no tempo found” mes-
sages). Thanks to Peter Schnebel.

1.6. Changelog 153

http://developer.echonest.com/acoustic-attributes.html
http://the.echonest.com/
http://www.musicpd.org/

beets Documentation, Release 1.4.7

• Convert Plugin: Fix an “Item has no library” error when using the auto config option.

• Convert Plugin: Fix an issue where files of the wrong format would have their transcoding skipped (and files
with the right format would be needlessly transcoded). Thanks to Jakob Schnitzer.

• Fix an issue that caused the id3v23 option to work only occasionally.

• Also fix using id3v23 in conjunction with the scrub and embedart plugins. Thanks to Chris Cogburn.

• IHate Plugin: Fix an error when importing singletons. Thanks to Mathijs de Bruin.

• The clutter option can now be a whitespace-separated list in addition to a YAML list.

• Values for the replace option can now be empty (i.e., null is equivalent to the empty string).

• LastGenre Plugin: Fix a conflict between canonicalization and multiple genres.

• When a match has a year but not a month or day, the autotagger now “zeros out” the month and day fields after
applying the year.

• For plugin developers: added an optparse callback utility function for performing actions based on argu-
ments. Thanks to Pedro Silva.

• Scrub Plugin: Fix scrubbing of MPEG-4 files. Thanks to Yevgeny Bezman.

1.6.26 1.3.1 (October 12, 2013)

This release boasts a host of new little features, many of them contributed by beets’ amazing and prolific community.
It adds support for Opus files, transcoding to any format, and two new plugins: one that guesses metadata for “blank”
files based on their filenames and one that moves featured artists into the title field.

Here’s the new stuff:

• Add Opus audio support. Thanks to Rowan Lewis.

• Convert Plugin: You can now transcode files to any audio format, rather than just MP3. Thanks again to Rowan
Lewis.

• The new FromFilename Plugin guesses tags from the filenames during import when metadata tags themselves
are missing. Thanks to Jan-Erik Dahlin.

• The FtInTitle Plugin, by @Verrus, is now distributed with beets. It helps you rewrite tags to move “featured”
artists from the artist field to the title field.

• The MusicBrainz data source now uses track artists over recording artists. This leads to better metadata when
tagging classical music. Thanks to Henrique Ferreiro.

• LastGenre Plugin: You can now get multiple genres per album or track using the multiple config option.
Thanks to rashley60 on GitHub.

• A new id3v23 config option makes beets write MP3 files’ tags using the older ID3v2.3 metadata standard. Use
this if you want your tags to be visible to Windows and some older players.

And some fixes:

• FetchArt Plugin: Better error message when the image file has an unrecognized type.

• MusicBrainz Collection Plugin: Detect, log, and skip invalid MusicBrainz IDs (instead of failing with an API
error).

• Info Plugin: Fail gracefully when used erroneously with a directory.

• echonest_tempo: Fix an issue where the plugin could use the tempo from the wrong song when the API did
not contain the requested song.

154 Chapter 1. Contents

http://www.opus-codec.org/
http://www.opus-codec.org/
https://github.com/Verrus

beets Documentation, Release 1.4.7

• Fix a crash when a file’s metadata included a very large number (one wider than 64 bits). These huge numbers
are now replaced with zeroes in the database.

• When a track on a MusicBrainz release has a different length from the underlying recording’s length, the track
length is now used instead.

• With per_disc_numbering enabled, the tracktotal field is now set correctly (i.e., to the number of tracks on
the disc).

• Scrub Plugin: The scrub command now restores album art in addition to other (database-backed) tags.

• MPDUpdate Plugin: Domain sockets can now begin with a tilde (which is correctly expanded to $HOME) as
well as a slash. Thanks to Johann Klähn.

• LastGenre Plugin: Fix a regression that could cause new genres found during import not to be persisted.

• Fixed a crash when imported album art was also marked as “clutter” where the art would be deleted before it
could be moved into place. This led to a “image.jpg not found during copy” error. Now clutter is removed (and
directories pruned) much later in the process, after the import_task_files hook.

• Missing Plugin: Fix an error when printing missing track names. Thanks to Pedro Silva.

• Fix an occasional KeyError in the update command introduced in 1.3.0.

• Scrub Plugin: Avoid preserving certain non-standard ID3 tags such as NCON.

1.6.27 1.3.0 (September 11, 2013)

Albums and items now have flexible attributes. This means that, when you want to store information about your
music in the beets database, you’re no longer constrained to the set of fields it supports out of the box (title, artist,
track, etc.). Instead, you can use any field name you can think of and treat it just like the built-in fields.

For example, you can use the modify command to set a new field on a track:

$ beet modify mood=sexy artist:miguel

and then query your music based on that field:

$ beet ls mood:sunny

or use templates to see the value of the field:

$ beet ls -f '$title: $mood'

While this feature is nifty when used directly with the usual command-line suspects, it’s especially useful for plugin
authors and for future beets features. Stay tuned for great things built on this flexible attribute infrastructure.

One side effect of this change: queries that include unknown fields will now match nothing instead of everything.
So if you type beet ls fieldThatDoesNotExist:foo, beets will now return no results, whereas previous
versions would spit out a warning and then list your entire library.

There’s more detail than you could ever need on the beets blog.

1.6.28 1.2.2 (August 27, 2013)

This is a bugfix release. We’re in the midst of preparing for a large change in beets 1.3, so 1.2.2 resolves some issues
that came up over the last few weeks. Stay tuned!

The improvements in this release are:

1.6. Changelog 155

http://beets.io/blog/flexattr.html

beets Documentation, Release 1.4.7

• A new plugin event, item_moved, is sent when files are moved on disk. Thanks to dsedivec.

• Lyrics Plugin: More improvements to the Google backend by Fabrice Laporte.

• BPD Plugin: Fix for a crash when searching, thanks to Simon Chopin.

• Regular expression queries (and other query types) over paths now work. (Previously, special query types were
ignored for the path field.)

• FetchArt Plugin: Look for images in the Cover Art Archive for the release group in addition to the specific
release. Thanks to Filipe Fortes.

• Fix a race in the importer that could cause files to be deleted before they were imported. This happened when
importing one album, importing a duplicate album, and then asking for the first album to be replaced with the
second. The situation could only arise when importing music from the library directory and when the two
albums are imported close in time.

1.6.29 1.2.1 (June 22, 2013)

This release introduces a major internal change in the way that similarity scores are handled. It means that the importer
interface can now show you exactly why a match is assigned its score and that the autotagger gained a few new options
that let you customize how matches are prioritized and recommended.

The refactoring work is due to the continued efforts of Tai Lee. The changes you’ll notice while using the autotagger
are:

• The top 3 distance penalties are now displayed on the release listing, and all album and track penalties are now
displayed on the track changes list. This should make it clear exactly which metadata is contributing to a low
similarity score.

• When displaying differences, the colorization has been made more consistent and helpful: red for an actual
difference, yellow to indicate that a distance penalty is being applied, and light gray for no penalty (e.g., case
changes) or disambiguation data.

There are also three new (or overhauled) configuration options that let you customize the way that matches are selected:

• The ignored setting lets you instruct the importer not to show you matches that have a certain penalty applied.

• The preferred collection of settings specifies a sorted list of preferred countries and media types, or prioritizes
releases closest to the original year for an album.

• The max_rec settings can now be used for any distance penalty component. The recommendation will be
downgraded if a non-zero penalty is being applied to the specified field.

And some little enhancements and bug fixes:

• Multi-disc directory names can now contain “disk” (in addition to “disc”). Thanks to John Hawthorn.

• Web Plugin: Item and album counts are now exposed through the API for use with the Tomahawk resolver.
Thanks to Uwe L. Korn.

• Python 2.6 compatibility for beatport, Missing Plugin, and Duplicates Plugin. Thanks to Wesley Bitter and
Pedro Silva.

• Don’t move the config file during a null migration. Thanks to Theofilos Intzoglou.

• Fix an occasional crash in the beatport when a length field was missing from the API response. Thanks to
Timothy Appnel.

• Scrub Plugin: Handle and log I/O errors.

• Lyrics Plugin: The Google backend should now turn up more results. Thanks to Fabrice Laporte.

• Random Plugin: Fix compatibility with Python 2.6. Thanks to Matthias Drochner.

156 Chapter 1. Contents

beets Documentation, Release 1.4.7

1.6.30 1.2.0 (June 5, 2013)

There’s a lot of new stuff in this release: new data sources for the autotagger, new plugins to look for problems in your
library, tracking the date that you acquired new music, an awesome new syntax for doing queries over numeric fields,
support for ALAC files, and major enhancements to the importer’s UI and distance calculations. A special thanks goes
out to all the contributors who helped make this release awesome.

For the first time, beets can now tag your music using additional data sources to augment the matches from Mu-
sicBrainz. When you enable either of these plugins, the importer will start showing you new kinds of matches:

• New Discogs Plugin: Get matches from the Discogs database. Thanks to Artem Ponomarenko and Tai Lee.

• New beatport plugin: Get matches from the Beatport database. Thanks to Johannes Baiter.

We also have two other new plugins that can scan your library to check for common problems, both by Pedro Silva:

• New Duplicates Plugin: Find tracks or albums in your library that are duplicated.

• New Missing Plugin: Find albums in your library that are missing tracks.

There are also three more big features added to beets core:

• Your library now keeps track of when music was added to it. The new added field is a timestamp reflect-
ing when each item and album was imported and the new %time{} template function lets you format this
timestamp for humans. Thanks to Lucas Duailibe.

• When using queries to match on quantitative fields, you can now use numeric ranges. For example, you can
get a list of albums from the ’90s by typing beet ls year:1990..1999 or find high-bitrate music with
bitrate:128000... See Numeric Range Queries. Thanks to Michael Schuerig.

• ALAC files are now marked as ALAC instead of being conflated with AAC audio. Thanks to Simon Luijk.

In addition, the importer saw various UI enhancements, thanks to Tai Lee:

• More consistent format and colorization of album and track metadata.

• Display data source URL for matches from the new data source plugins. This should make it easier to migrate
data from Discogs or Beatport into MusicBrainz.

• Display album disambiguation and disc titles in the track listing, when available.

• Track changes are highlighted in yellow when they indicate a change in format to or from the style of
per_disc_numbering. (As before, no penalty is applied because the track number is still “correct”, just in a
different format.)

• Sort missing and unmatched tracks by index and title and group them together for better readability.

• Indicate MusicBrainz ID mismatches.

The calculation of the similarity score for autotagger matches was also improved, again thanks to Tai Lee. These
changes, in general, help deal with the new metadata sources and help disambiguate between similar releases in the
same MusicBrainz release group:

• Strongly prefer releases with a matching MusicBrainz album ID. This helps beets re-identify the same release
when re-importing existing files.

• Prefer releases that are closest to the tagged year. Tolerate files tagged with release or original year.

• The new preferred_media config option lets you prefer a certain media type when the media field is unset
on an album.

• Apply minor penalties across a range of fields to differentiate between nearly identical releases: disctotal,
label, catalognum, country and albumdisambig.

As usual, there were also lots of other great littler enhancements:

1.6. Changelog 157

http://discogs.com/
http://www.beatport.com/

beets Documentation, Release 1.4.7

• Random Plugin: A new -e option gives an equal chance to each artist in your collection to avoid biasing random
samples to prolific artists. Thanks to Georges Dubus.

• The modify now correctly converts types when modifying non-string fields. You can now safely modify the
“comp” flag and the “year” field, for example. Thanks to Lucas Duailibe.

• Convert Plugin: You can now configure the path formats for converted files separately from your main library.
Thanks again to Lucas Duailibe.

• The importer output now shows the number of audio files in each album. Thanks to jayme on GitHub.

• Plugins can now provide fields for both Album and Item templates, thanks to Pedro Silva. Accordingly, the
Inline Plugin can also now define album fields. For consistency, the pathfields configuration section has
been renamed item_fields (although the old name will still work for compatibility).

• Plugins can also provide metadata matches for ID searches. For example, the new Discogs plugin lets you search
for an album by its Discogs ID from the same prompt that previously just accepted MusicBrainz IDs. Thanks to
Johannes Baiter.

• The fields command shows template fields provided by plugins. Thanks again to Pedro Silva.

• MPDUpdate Plugin: You can now communicate with MPD over a Unix domain socket. Thanks to John
Hawthorn.

And a batch of fixes:

• Album art filenames now respect the replace configuration.

• Friendly error messages are now printed when trying to read or write files that go missing.

• The modify command can now change albums’ album art paths (i.e., beet modify artpath=... works).
Thanks to Lucas Duailibe.

• Zero Plugin: Fix a crash when nulling out a field that contains None.

• Templates can now refer to non-tag item fields (e.g., $id and $album_id).

• Lyrics Plugin: Lyrics searches should now turn up more results due to some fixes in dealing with special char-
acters.

1.6.31 1.1.0 (April 29, 2013)

This final release of 1.1 brings a little polish to the betas that introduced the new configuration system. The album art
and lyrics plugins also got a little love.

If you’re upgrading from 1.0.0 or earlier, this release (like the 1.1 betas) will automatically migrate your configuration
to the new system.

• EmbedArt Plugin: The embedart command now embeds each album’s associated art by default. The --file
option invokes the old behavior, in which a specific image file is used.

• Lyrics Plugin: A new (optional) Google Custom Search backend was added for finding lyrics on a wide array
of sites. Thanks to Fabrice Laporte.

• When automatically detecting the filesystem’s maximum filename length, never guess more than 200 characters.
This prevents errors on systems where the maximum length was misreported. You can, of course, override this
default with the max_filename_length option.

• FetchArt Plugin: Two new configuration options were added: cover_names, the list of keywords used to
identify preferred images, and cautious, which lets you avoid falling back to images that don’t contain those
keywords. Thanks to Fabrice Laporte.

158 Chapter 1. Contents

beets Documentation, Release 1.4.7

• Avoid some error cases in the update command and the embedart and mbsync plugins. Invalid or missing
files now cause error logs instead of crashing beets. Thanks to Lucas Duailibe.

• Lyrics Plugin: Searches now strip “featuring” artists when searching for lyrics, which should increase the hit
rate for these tracks. Thanks to Fabrice Laporte.

• When listing the items in an album, the items are now always in track-number order. This should lead to more
predictable listings from the ImportFeeds Plugin.

• Smart Playlist Plugin: Queries are now split using shell-like syntax instead of just whitespace, so you can now
construct terms that contain spaces.

• LastGenre Plugin: The force config option now defaults to true and controls the behavior of the import hook.
(Previously, new genres were always forced during import.)

• Web Plugin: Fix an error when specifying the hostname on the command line.

• Web Plugin: The underlying API was expanded slightly to support Tomahawk collections. And file transfers
now have a “Content-Length” header. Thanks to Uwe L. Korn.

• LastGenre Plugin: Fix an error when using genre canonicalization.

1.6.32 1.1b3 (March 16, 2013)

This third beta of beets 1.1 brings a hodgepodge of little new features (and internal overhauls that will make improve-
ments easier in the future). There are new options for getting metadata in a particular language and seeing more detail
during the import process. There’s also a new plugin for synchronizing your metadata with MusicBrainz. Under the
hood, plugins can now extend the query syntax.

New configuration options:

• languages controls the preferred languages when selecting an alias from MusicBrainz. This feature requires
python-musicbrainzngs 0.3 or later. Thanks to Sam Doshi.

• detail enables a mode where all tracks are listed in the importer UI, as opposed to only changed tracks.

• The --flat option to the beet import command treats an entire directory tree of music files as a single
album. This can help in situations where a multi-disc album is split across multiple directories.

• ImportFeeds Plugin: An option was added to use absolute, rather than relative, paths. Thanks to Lucas Duailibe.

Other stuff:

• A new MBSync Plugin provides a command that looks up each item and track in MusicBrainz and updates your
library to reflect it. This can help you easily correct errors that have been fixed in the MB database. Thanks to
Jakob Schnitzer.

• Fuzzy Search Plugin: The fuzzy command was removed and replaced with a new query type. To perform
fuzzy searches, use the ~ prefix with list or other commands. Thanks to Philippe Mongeau.

• As part of the above, plugins can now extend the query syntax and new kinds of matching capabilities to beets.
See Extend the Query Syntax. Thanks again to Philippe Mongeau.

• Convert Plugin: A new --keep-new option lets you store transcoded files in your library while backing up
the originals (instead of vice-versa). Thanks to Lucas Duailibe.

• Convert Plugin: Also, a new auto config option will transcode audio files automatically during import. Thanks
again to Lucas Duailibe.

• Chromaprint/Acoustid Plugin: A new fingerprint command lets you generate and store fingerprints for
items that don’t yet have them. One more round of applause for Lucas Duailibe.

1.6. Changelog 159

http://www.tomahawk-player.org/
https://github.com/alastair/python-musicbrainzngs

beets Documentation, Release 1.4.7

• echonest_tempo: API errors now issue a warning instead of exiting with an exception. We also avoid an
error when track metadata contains newlines.

• When the importer encounters an error (insufficient permissions, for example) when walking a directory tree, it
now logs an error instead of crashing.

• In path formats, null database values now expand to the empty string instead of the string “None”.

• Add “System Volume Information” (an internal directory found on some Windows filesystems) to the default
ignore list.

• Fix a crash when ReplayGain values were set to null.

• Fix a crash when iTunes Sound Check tags contained invalid data.

• Fix an error when the configuration file (config.yaml) is completely empty.

• Fix an error introduced in 1.1b1 when importing using timid mode. Thanks to Sam Doshi.

• Convert Plugin: Fix a bug when creating files with Unicode pathnames.

• Fix a spurious warning from the Unidecode module when matching albums that are missing all metadata.

• Fix Unicode errors when a directory or file doesn’t exist when invoking the import command. Thanks to Lucas
Duailibe.

• MusicBrainz Collection Plugin: Show friendly, human-readable errors when MusicBrainz exceptions occur.

• echonest_tempo: Catch socket errors that are not handled by the Echo Nest library.

• Chromaprint/Acoustid Plugin: Catch Acoustid Web service errors when submitting fingerprints.

1.6.33 1.1b2 (February 16, 2013)

The second beta of beets 1.1 uses the fancy new configuration infrastructure to add many, many new config options.
The import process is more flexible; filenames can be customized in more detail; and more. This release also supports
Windows Media (ASF) files and iTunes Sound Check volume normalization.

This version introduces one change to the default behavior that you should be aware of. Previously, when importing
new albums matched in MusicBrainz, the date fields (year, month, and day) would be set to the release date of
the original version of the album, as opposed to the specific date of the release selected. Now, these fields reflect
the specific release and original_year, etc., reflect the earlier release date. If you want the old behavior, just set
original_date to true in your config file.

New configuration options:

• default_action lets you determine the default (just-hit-return) option is when considering a candidate.

• none_rec_action lets you skip the prompt, and automatically choose an action, when there is no good candidate.
Thanks to Tai Lee.

• max_rec lets you define a maximum recommendation for albums with missing/extra tracks or differing track
lengths/numbers. Thanks again to Tai Lee.

• original_date determines whether, when importing new albums, the year, month, and day fields should
reflect the specific (e.g., reissue) release date or the original release date. Note that the original release date is
always available as original_year, etc.

• clutter controls which files should be ignored when cleaning up empty directories. Thanks to Steinþór Pálsson.

• LastGenre Plugin: A new configuration option lets you choose to retrieve artist-level tags as genres instead of
album- or track-level tags. Thanks to Peter Fern and Peter Schnebel.

160 Chapter 1. Contents

beets Documentation, Release 1.4.7

• max_filename_length controls truncation of long filenames. Also, beets now tries to determine the filesystem’s
maximum length automatically if you leave this option unset.

• FetchArt Plugin: The remote_priority option searches remote (Web) art sources even when local art is
present.

• You can now customize the character substituted for path separators (e.g., /) in filenames via
path_sep_replace. The default is an underscore. Use this setting with caution.

Other new stuff:

• Support for Windows Media/ASF audio files. Thanks to Dave Hayes.

• New Smart Playlist Plugin: generate and maintain m3u playlist files based on beets queries. Thanks to Dang
Mai Hai.

• ReplayGain tags on MPEG-4/AAC files are now supported. And, even more astonishingly, ReplayGain values
in MP3 and AAC files are now compatible with iTunes Sound Check. Thanks to Dave Hayes.

• Track titles in the importer UI’s difference display are now either aligned vertically or broken across two lines
for readability. Thanks to Tai Lee.

• Albums and items have new fields reflecting the original release date (original_year, original_month,
and original_day). Previously, when tagging from MusicBrainz, only the original date was stored; now,
the old fields refer to the specific release date (e.g., when the album was reissued).

• Some changes to the way candidates are recommended for selection, thanks to Tai Lee:

– According to the new max_rec configuration option, partial album matches are downgraded to a “low”
recommendation by default.

– When a match isn’t great but is either better than all the others or the only match, it is given a “low” (rather
than “medium”) recommendation.

– There is no prompt default (i.e., input is required) when matches are bad: “low” or “none” recommenda-
tions or when choosing a candidate other than the first.

• The importer’s heuristic for coalescing the directories in a multi-disc album has been improved. It can now
detect when two directories alongside each other share a similar prefix but a different number (e.g., “Album
Disc 1” and “Album Disc 2”) even when they are not alone in a common parent directory. Thanks once again to
Tai Lee.

• Album listings in the importer UI now show the release medium (CD, Vinyl, 3xCD, etc.) as well as the disam-
biguation string. Thanks to Peter Schnebel.

• LastGenre Plugin: The plugin can now get different genres for individual tracks on an album. Thanks to Peter
Schnebel.

• When getting data from MusicBrainz, the album disambiguation string (albumdisambig) now reflects both
the release and the release group.

• MPDUpdate Plugin: Sends an update message whenever anything in the database changes—not just when
importing. Thanks to Dang Mai Hai.

• When the importer UI shows a difference in track numbers or durations, they are now colorized based on the
suffixes that differ. For example, when showing the difference between 2:01 and 2:09, only the last digit will be
highlighted.

• The importer UI no longer shows a change when the track length difference is less than 10 seconds. (This
threshold was previously 2 seconds.)

• Two new plugin events were added: database_change and cli_exit. Thanks again to Dang Mai Hai.

• Plugins are now loaded in the order they appear in the config file. Thanks to Dang Mai Hai.

1.6. Changelog 161

http://support.apple.com/kb/HT2425

beets Documentation, Release 1.4.7

• BPD Plugin: Browse by album artist and album artist sort name. Thanks to Steinþór Pálsson.

• echonest_tempo: Don’t attempt a lookup when the artist or track title is missing.

• Fix an error when migrating the .beetsstate file on Windows.

• A nicer error message is now given when the configuration file contains tabs. (YAML doesn’t like tabs.)

• Fix the -l (log path) command-line option for the import command.

1.6.34 1.1b1 (January 29, 2013)

This release entirely revamps beets’ configuration system. The configuration file is now a YAML document and is
located, along with other support files, in a common directory (e.g., ~/.config/beets on Unix-like systems).

• Renamed plugins: The rdm plugin has been renamed to random and fuzzy_search has been renamed to
fuzzy.

• Renamed config options: Many plugins have a flag dictating whether their action runs at import time. This
option had many names (autofetch, autoembed, etc.) but is now consistently called auto.

• Reorganized import config options: The various import_* options are now organized under an import:
heading and their prefixes have been removed.

• New default file locations: The default filename of the library database is now library.db in the same
directory as the config file, as opposed to ~/.beetsmusic.blb previously. Similarly, the runtime state file
is now called state.pickle in the same directory instead of ~/.beetsstate.

It also adds some new features:

• Inline Plugin: Inline definitions can now contain statements or blocks in addition to just expressions. Thanks to
Florent Thoumie.

• Add a configuration option, terminal_encoding, controlling the text encoding used to print messages to standard
output.

• The MusicBrainz hostname (and rate limiting) are now configurable. See MusicBrainz Options.

• You can now configure the similarity thresholds used to determine when the autotagger automatically accepts a
metadata match. See Autotagger Matching Options.

• ImportFeeds Plugin: Added a new configuration option that controls the base for relative paths used in m3u
files. Thanks to Philippe Mongeau.

1.6.35 1.0.0 (January 29, 2013)

After fifteen betas and two release candidates, beets has finally hit one-point-oh. Congratulations to everybody in-
volved. This version of beets will remain stable and receive only bug fixes from here on out. New development is
ongoing in the betas of version 1.1.

• Scrub Plugin: Fix an incompatibility with Python 2.6.

• Lyrics Plugin: Fix an issue that failed to find lyrics when metadata contained “real” apostrophes.

• ReplayGain Plugin: On Windows, emit a warning instead of crashing when analyzing non-ASCII filenames.

• Silence a spurious warning from version 0.04.12 of the Unidecode module.

162 Chapter 1. Contents

http://en.wikipedia.org/wiki/YAML

beets Documentation, Release 1.4.7

1.6.36 1.0rc2 (December 31, 2012)

This second release candidate follows quickly after rc1 and fixes a few small bugs found since that release. There were
a couple of regressions and some bugs in a newly added plugin.

• echonest_tempo: If the Echo Nest API limit is exceeded or a communication error occurs, the plugin now
waits and tries again instead of crashing. Thanks to Zach Denton.

• FetchArt Plugin: Fix a regression that caused crashes when art was not available from some sources.

• Fix a regression on Windows that caused all relative paths to be “not found”.

1.6.37 1.0rc1 (December 17, 2012)

The first release candidate for beets 1.0 includes a deluge of new features contributed by beets users. The vast majority
of the credit for this release goes to the growing and vibrant beets community. A million thanks to everybody who
contributed to this release.

There are new plugins for transcoding music, fuzzy searches, tempo collection, and fiddling with metadata. The
ReplayGain plugin has been rebuilt from scratch. Album art images can now be resized automatically. Many other
smaller refinements make things “just work” as smoothly as possible.

With this release candidate, beets 1.0 is feature-complete. We’ll be fixing bugs on the road to 1.0 but no new features
will be added. Concurrently, work begins today on features for version 1.1.

• New plugin: Convert Plugin transcodes music and embeds album art while copying to a separate directory.
Thanks to Jakob Schnitzer and Andrew G. Dunn.

• New plugin: Fuzzy Search Plugin lets you find albums and tracks using fuzzy string matching so you don’t
have to type (or even remember) their exact names. Thanks to Philippe Mongeau.

• New plugin: echonest_tempo fetches tempo (BPM) information from The Echo Nest. Thanks to David
Brenner.

• New plugin: The Plugin adds a template function that helps format text for nicely-sorted directory listings.
Thanks to Blemjhoo Tezoulbr.

• New plugin: Zero Plugin filters out undesirable fields before they are written to your tags. Thanks again to
Blemjhoo Tezoulbr.

• New plugin: IHate Plugin automatically skips (or warns you about) importing albums that match certain criteria.
Thanks once again to Blemjhoo Tezoulbr.

• ReplayGain Plugin: This plugin has been completely overhauled to use the mp3gain or aacgain command-line
tools instead of the failure-prone Gstreamer ReplayGain implementation. Thanks to Fabrice Laporte.

• FetchArt Plugin and EmbedArt Plugin: Both plugins can now resize album art to avoid excessively large
images. Use the maxwidth config option with either plugin. Thanks to Fabrice Laporte.

• Scrub Plugin: Scrubbing now removes all types of tags from a file rather than just one. For example, if your
FLAC file has both ordinary FLAC tags and ID3 tags, the ID3 tags are now also removed.

• stats command: New --exact switch to make the file size calculation more accurate (thanks to Jakob
Schnitzer).

• list command: Templates given with -f can now show items’ and albums’ paths (using $path).

• The output of the update, remove, and modify commands now respects the format_album and format_item config
options. Thanks to Mike Kazantsev.

• The art_filename option can now be a template rather than a simple string. Thanks to Jarrod Beardwood.

1.6. Changelog 163

http://the.echonest.com/
http://mp3gain.sourceforge.net/download.php
http://aacgain.altosdesign.com

beets Documentation, Release 1.4.7

• Fix album queries for artpath and other non-item fields.

• Null values in the database can now be matched with the empty-string regular expression, ^$.

• Queries now correctly match non-string values in path format predicates.

• When autotagging a various-artists album, the album artist field is now used instead of the majority track artist.

• LastGenre Plugin: Use the albums’ existing genre tags if they pass the whitelist (thanks to Fabrice Laporte).

• LastGenre Plugin: Add a lastgenre command for fetching genres post facto (thanks to Jakob Schnitzer).

• FetchArt Plugin: Local image filenames are now used in alphabetical order.

• FetchArt Plugin: Fix a bug where cover art filenames could lack a .jpg extension.

• Lyrics Plugin: Fix an exception with non-ASCII lyrics.

• Web Plugin: The API now reports file sizes (for use with the Tomahawk resolver).

• Web Plugin: Files now download with a reasonable filename rather than just being called “file” (thanks to Zach
Denton).

• ImportFeeds Plugin: Fix error in symlink mode with non-ASCII filenames.

• MusicBrainz Collection Plugin: Fix an error when submitting a large number of releases (we now submit only
200 releases at a time instead of 350). Thanks to Jonathan Towne.

• EmbedArt Plugin: Made the method for embedding art into FLAC files standard-compliant. Thanks to Daniele
Sluijters.

• Add the track mapping dictionary to the album_distance plugin function.

• When an exception is raised while reading a file, the path of the file in question is now logged (thanks to Mike
Kazantsev).

• Truncate long filenames based on their bytes rather than their Unicode characters, fixing situations where en-
coded names could be too long.

• Filename truncation now incorporates the length of the extension.

• Fix an assertion failure when the MusicBrainz main database and search server disagree.

• Fix a bug that caused the LastGenre Plugin and other plugins not to modify files’ tags even when they success-
fully change the database.

• Fix a VFS bug leading to a crash in the BPD Plugin when files had non-ASCII extensions.

• Fix for changing date fields (like “year”) with the modify command.

• Fix a crash when input is read from a pipe without a specified encoding.

• Fix some problem with identifying files on Windows with Unicode directory names in their path.

• Fix a crash when Unicode queries were used with import -L re-imports.

• Fix an error when fingerprinting files with Unicode filenames on Windows.

• Warn instead of crashing when importing a specific file in singleton mode.

• Add human-readable error messages when writing files’ tags fails or when a directory can’t be created.

• Changed plugin loading so that modules can be imported without unintentionally loading the plugins they con-
tain.

164 Chapter 1. Contents

http://beets.io/blog/tomahawk-resolver.html
https://wiki.xiph.org/VorbisComment#METADATA_BLOCK_PICTURE

beets Documentation, Release 1.4.7

1.6.38 1.0b15 (July 26, 2012)

The fifteenth (!) beta of beets is compendium of small fixes and features, most of which represent long-standing
requests. The improvements include matching albums with extra tracks, per-disc track numbering in multi-disc albums,
an overhaul of the album art downloader, and robustness enhancements that should keep beets running even when
things go wrong. All these smaller changes should help us focus on some larger changes coming before 1.0.

Please note that this release contains one backwards-incompatible change: album art fetching, which was previously
baked into the import workflow, is now encapsulated in a plugin (the FetchArt Plugin). If you want to continue fetching
cover art for your music, enable this plugin after upgrading to beets 1.0b15.

• The autotagger can now find matches for albums when you have extra tracks on your filesystem that aren’t
present in the MusicBrainz catalog. Previously, if you tried to match album with 15 audio files but the Mu-
sicBrainz entry had only 14 tracks, beets would ignore this match. Now, beets will show you matches even
when they are “too short” and indicate which tracks from your disk are unmatched.

• Tracks on multi-disc albums can now be numbered per-disc instead of per-album via the per_disc_numbering
config option.

• The default output format for the beet list command is now configurable via the format_item and for-
mat_album config options. Thanks to Fabrice Laporte.

• Album cover art fetching is now encapsulated in the FetchArt Plugin. Be sure to enable this plugin if you’re
using this functionality. As a result of this new organization, the new plugin has gained a few new features:

– “As-is” and non-autotagged imports can now have album art imported from the local filesystem (although
Web repositories are still not searched in these cases).

– A new command, beet fetchart, allows you to download album art post-import. If you only want to
fetch art manually, not automatically during import, set the new plugin’s autofetch option to no.

– New album art sources have been added.

• Errors when communicating with MusicBrainz now log an error message instead of halting the importer.

• Similarly, filesystem manipulation errors now print helpful error messages instead of a messy traceback. They
still interrupt beets, but they should now be easier for users to understand. Tracebacks are still available in
verbose mode.

• New metadata fields for artist credits: artist_credit and albumartist_credit can now contain
release- and recording-specific variations of the artist’s name. See Available Values.

• Revamped the way beets handles concurrent database access to avoid nondeterministic SQLite-related crashes
when using the multithreaded importer. On systems where SQLite was compiled without usleep(3) support,
multithreaded database access could cause an internal error (with the message “database is locked”). This release
synchronizes access to the database to avoid internal SQLite contention, which should avoid this error.

• Plugins can now add parallel stages to the import pipeline. See Writing Plugins.

• Beets now prints out an error when you use an unrecognized field name in a query: for example, when running
beet ls -a artist:foo (because artist is an item-level field).

• New plugin events:

– import_task_choice is called after an import task has an action assigned.

– import_task_files is called after a task’s file manipulation has finished (copying or moving files,
writing metadata tags).

– library_opened is called when beets starts up and opens the library database.

• LastGenre Plugin: Fixed a problem where path formats containing $genre would use the old genre instead of
the newly discovered one.

1.6. Changelog 165

http://wiki.musicbrainz.org/Artist_Credit

beets Documentation, Release 1.4.7

• Fix a crash when moving files to a Samba share.

• MPDUpdate Plugin: Fix TypeError crash (thanks to Philippe Mongeau).

• When re-importing files with import_copy enabled, only files inside the library directory are moved. Files
outside the library directory are still copied. This solves a problem (introduced in 1.0b14) where beets could
crash after adding files to the library but before finishing copying them; during the next import, the (external)
files would be moved instead of copied.

• Artist sort names are now populated correctly for multi-artist tracks and releases. (Previously, they only reflected
the first artist.)

• When previewing changes during import, differences in track duration are now shown as “2:50 vs. 3:10” rather
than separated with -> like track numbers. This should clarify that beets isn’t doing anything to modify lengths.

• Fix a problem with query-based path format matching where a field-qualified pattern, like
albumtype_soundtrack, would match everything.

• Chromaprint/Acoustid Plugin: Fix matching with ambiguous Acoustids. Some Acoustids are identified with
multiple recordings; beets now considers any associated recording a valid match. This should reduce some
cases of errant track reordering when using chroma.

• Fix the ID3 tag name for the catalog number field.

• Chromaprint/Acoustid Plugin: Fix occasional crash at end of fingerprint submission and give more context to
“failed fingerprint generation” errors.

• Interactive prompts are sent to stdout instead of stderr.

• EmbedArt Plugin: Fix crash when audio files are unreadable.

• BPD Plugin: Fix crash when sockets disconnect (thanks to Matteo Mecucci).

• Fix an assertion failure while importing with moving enabled when the file was already at its destination.

• Fix Unicode values in the replace config option (thanks to Jakob Borg).

• Use a nicer error message when input is requested but stdin is closed.

• Fix errors on Windows for certain Unicode characters that can’t be represented in the MBCS encoding. This
required a change to the way that paths are represented in the database on Windows; if you find that beets’ paths
are out of sync with your filesystem with this release, delete and recreate your database with beet import
-AWC /path/to/music.

• Fix import with relative path arguments on Windows.

1.6.39 1.0b14 (May 12, 2012)

The centerpiece of this beets release is the graceful handling of similarly-named albums. It’s now possible to import
two albums with the same artist and title and to keep them from conflicting in the filesystem. Many other awesome
new features were contributed by the beets community, including regular expression queries, artist sort names, moving
files on import. There are three new plugins: random song/album selection; MusicBrainz “collection” integration; and
a plugin for interoperability with other music library systems.

A million thanks to the (growing) beets community for making this a huge release.

• The importer now gives you choices when duplicates are detected. Previously, when beets found an existing
album or item in your library matching the metadata on a newly-imported one, it would just skip the new music
to avoid introducing duplicates into your library. Now, you have three choices: skip the new music (the previous
behavior), keep both, or remove the old music. See the Duplicates section in the autotagging guide for details.

166 Chapter 1. Contents

beets Documentation, Release 1.4.7

• Beets can now avoid storing identically-named albums in the same directory. The new %aunique{} template
function, which is included in the default path formats, ensures that Crystal Castles’ albums will be placed into
different directories. See Album Disambiguation for details.

• Beets queries can now use regular expressions. Use an additional : in your query to enable regex matching.
See Regular Expressions for the full details. Thanks to Matteo Mecucci.

• Artist sort names are now fetched from MusicBrainz. There are two new data fields, artist_sort and
albumartist_sort, that contain sortable artist names like “Beatles, The”. These fields are also used to sort
albums and items when using the list command. Thanks to Paul Provost.

• Many other new metadata fields were added, including ASIN, label catalog number, disc title, encoder, and
MusicBrainz release group ID. For a full list of fields, see Available Values.

• Chromaprint/Acoustid Plugin: A new command, beet submit, will submit fingerprints to the Acoustid
database. Submitting your library helps increase the coverage and accuracy of Acoustid fingerprinting. The
Chromaprint fingerprint and Acoustid ID are also now stored for all fingerprinted tracks. This version of beets
requires at least version 0.6 of pyacoustid for fingerprinting to work.

• The importer can now move files. Previously, beets could only copy files and delete the originals, which is
inefficient if the source and destination are on the same filesystem. Use the import_move configuration
option and see Configuration for more details. Thanks to Domen Kožar.

• New Random Plugin: Randomly select albums and tracks from your library. Thanks to Philippe Mongeau.

• The MusicBrainz Collection Plugin by Jeffrey Aylesworth was added to the core beets distribution.

• New ImportFeeds Plugin: Catalog imported files in m3u playlist files or as symlinks for easy importing to other
systems. Thanks to Fabrice Laporte.

• The -f (output format) option to the beet list command can now contain template functions as well as
field references. Thanks to Steve Dougherty.

• A new command beet fields displays the available metadata fields (thanks to Matteo Mecucci).

• The import command now has a --noincremental or -I flag to disable incremental imports (thanks to
Matteo Mecucci).

• When the autotagger fails to find a match, it now displays the number of tracks on the album (to help you guess
what might be going wrong) and a link to the FAQ.

• The default filename character substitutions were changed to be more conservative. The Windows “reserved
characters” are substituted by default even on Unix platforms (this causes less surprise when using Samba
shares to store music). To customize your character substitutions, see the replace config option.

• LastGenre Plugin: Added a “fallback” option when no suitable genre can be found (thanks to Fabrice Laporte).

• Rewrite Plugin: Unicode rewriting rules are now allowed (thanks to Nicolas Dietrich).

• Filename collisions are now avoided when moving album art.

• BPD Plugin: Print messages to show when directory tree is being constructed.

• BPD Plugin: Use Gstreamer’s playbin2 element instead of the deprecated playbin.

• BPD Plugin: Random and repeat modes are now supported (thanks to Matteo Mecucci).

• BPD Plugin: Listings are now sorted (thanks once again to Matteo Mecucci).

• Filenames are normalized with Unicode Normal Form D (NFD) on Mac OS X and NFC on all other platforms.

• Significant internal restructuring to avoid SQLite locking errors. As part of these changes, the not-very-useful
“save” plugin event has been removed.

1.6. Changelog 167

https://github.com/beetbox/pyacoustid

beets Documentation, Release 1.4.7

1.6.40 1.0b13 (March 16, 2012)

Beets 1.0b13 consists of a plethora of small but important fixes and refinements. A lyrics plugin is now included with
beets; new audio properties are catalogged; the list command has been made more powerful; the autotagger is more
tolerant of different tagging styles; and importing with original file deletion now cleans up after itself more thoroughly.
Many, many bugs—including several crashers—were fixed. This release lays the foundation for more features to come
in the next couple of releases.

• The Lyrics Plugin, originally by Peter Brunner, is revamped and included with beets, making it easy to fetch
song lyrics.

• Items now expose their audio sample rate, number of channels, and bits per sample (bitdepth). See Path
Formats for a list of all available audio properties. Thanks to Andrew Dunn.

• The beet list command now accepts a “format” argument that lets you show specific information about
each album or track. For example, run beet ls -af '$album: $tracktotal' beatles to see
how long each Beatles album is. Thanks to Philippe Mongeau.

• The autotagger now tolerates tracks on multi-disc albums that are numbered per-disc. For example, if track 24
on a release is the first track on the second disc, then it is not penalized for having its track number set to 1
instead of 24.

• The autotagger sets the disc number and disc total fields on autotagged albums.

• The autotagger now also tolerates tracks whose track artists tags are set to “Various Artists”.

• Terminal colors are now supported on Windows via Colorama (thanks to Karl).

• When previewing metadata differences, the importer now shows discrepancies in track length.

• Importing with import_delete enabled now cleans up empty directories that contained deleting imported
music files.

• Similarly, import_delete now causes original album art imported from the disk to be deleted.

• Plugin-supplied template values, such as those created by rewrite, are now properly sanitized (for example,
AC/DC properly becomes AC_DC).

• Filename extensions are now always lower-cased when copying and moving files.

• The inline plugin now prints a more comprehensible error when exceptions occur in Python snippets.

• The replace configuration option can now remove characters entirely (in addition to replacing them) if the
special string <strip> is specified as the replacement.

• New plugin API: plugins can now add fields to the MediaFile tag abstraction layer. See Writing Plugins.

• A reasonable error message is now shown when the import log file cannot be opened.

• The import log file is now flushed and closed properly so that it can be used to monitor import progress, even
when the import crashes.

• Duplicate track matches are no longer shown when autotagging singletons.

• The chroma plugin now logs errors when fingerprinting fails.

• The lastgenre plugin suppresses more errors when dealing with the Last.fm API.

• Fix a bug in the rewrite plugin that broke the use of multiple rules for a single field.

• Fix a crash with non-ASCII characters in bytestring metadata fields (e.g., MusicBrainz IDs).

• Fix another crash with non-ASCII characters in the configuration paths.

• Fix a divide-by-zero crash on zero-length audio files.

168 Chapter 1. Contents

https://github.com/Lugoues
http://pypi.python.org/pypi/colorama

beets Documentation, Release 1.4.7

• Fix a crash in the chroma plugin when the Acoustid database had no recording associated with a fingerprint.

• Fix a crash when an autotagging with an artist or album containing “AND” or “OR” (upper case).

• Fix an error in the rewrite and inline plugins when the corresponding config sections did not exist.

• Fix bitrate estimation for AAC files whose headers are missing the relevant data.

• Fix the list command in BPD (thanks to Simon Chopin).

1.6.41 1.0b12 (January 16, 2012)

This release focuses on making beets’ path formatting vastly more powerful. It adds a function syntax for transforming
text. Via a new plugin, arbitrary Python code can also be used to define new path format fields. Each path format
template can now be activated conditionally based on a query. Character set substitutions are also now configurable.

In addition, beets avoids problematic filename conflicts by appending numbers to filenames that would otherwise
conflict. Three new plugins (inline, scrub, and rewrite) are included in this release.

• Functions in path formats provide a simple way to write complex file naming rules: for example,
%upper{%left{$artist,1}} will insert the capitalized first letter of the track’s artist. For more details,
see Path Formats. If you’re interested in adding your own template functions via a plugin, see Writing Plugins.

• Plugins can also now define new path fields in addition to functions.

• The new Inline Plugin lets you use Python expressions to customize path formats by defining new fields in
the config file.

• The configuration can condition path formats based on queries. That is, you can write a path format that
is only used if an item matches a given query. (This supersedes the earlier functionality that only allowed
conditioning on album type; if you used this feature in a previous version, you will need to replace, for example,
soundtrack: with albumtype_soundtrack:.) See Path Format Configuration.

• Filename substitutions are now configurable via the replace config value. You can choose which characters
you think should be allowed in your directory and music file names. See Configuration.

• Beets now ensures that files have unique filenames by appending a number to any filename that would otherwise
conflict with an existing file.

• The new Scrub Plugin can remove extraneous metadata either manually or automatically.

• The new Rewrite Plugin can canonicalize names for path formats.

• The autotagging heuristics have been tweaked in situations where the MusicBrainz database did not contain track
lengths. Previously, beets penalized matches where this was the case, leading to situations where seemingly good
matches would have poor similarity. This penalty has been removed.

• Fix an incompatibility in BPD with libmpc (the library that powers mpc and ncmpc).

• Fix a crash when importing a partial match whose first track was missing.

• The lastgenre plugin now correctly writes discovered genres to imported files (when tag-writing is enabled).

• Add a message when skipping directories during an incremental import.

• The default ignore settings now ignore all files beginning with a dot.

• Date values in path formats ($year, $month, and $day) are now appropriately zero-padded.

• Removed the --path-format global flag for beet.

• Removed the lastid plugin, which was deprecated in the previous version.

1.6. Changelog 169

beets Documentation, Release 1.4.7

1.6.42 1.0b11 (December 12, 2011)

This version of beets focuses on transitioning the autotagger to the new version of the MusicBrainz database (called
NGS). This transition brings with it a number of long-overdue improvements: most notably, predictable behavior when
tagging multi-disc albums and integration with the new Acoustid acoustic fingerprinting technology.

The importer can also now tag incomplete albums when you’re missing a few tracks from a given release. Two other
new plugins are also included with this release: one for assigning genres and another for ReplayGain analysis.

• Beets now communicates with MusicBrainz via the new Next Generation Schema (NGS) service via python-
musicbrainzngs. The bindings are included with this version of beets, but a future version will make them an
external dependency.

• The importer now detects multi-disc albums and tags them together. Using a heuristic based on the names of
directories, certain structures are classified as multi-disc albums: for example, if a directory contains subdirec-
tories labeled “disc 1” and “disc 2”, these subdirectories will be coalesced into a single album for tagging.

• The new Chromaprint/Acoustid Plugin uses the Acoustid open-source acoustic fingerprinting service. This
replaces the old lastid plugin, which used Last.fm fingerprinting and is now deprecated. Fingerprinting with
this library should be faster and more reliable.

• The importer can now perform partial matches. This means that, if you’re missing a few tracks from an album,
beets can still tag the remaining tracks as a single album. (Thanks to Simon Chopin.)

• The new LastGenre Plugin automatically assigns genres to imported albums and items based on Last.fm tags
and an internal whitelist. (Thanks to KraYmer.)

• The ReplayGain Plugin, written by Peter Brunner, has been merged into the core beets distribution. Use it to
analyze audio and adjust playback levels in ReplayGain-aware music players.

• Albums are now tagged with their original release date rather than the date of any reissue, remaster, “special
edition”, or the like.

• The config file and library databases are now given better names and locations on Windows. Namely, both
files now reside in %APPDATA%; the config file is named beetsconfig.ini and the database is called
beetslibrary.blb (neither has a leading dot as on Unix). For backwards compatibility, beets will check
the old locations first.

• When entering an ID manually during tagging, beets now searches for anything that looks like an MBID in the
entered string. This means that full MusicBrainz URLs now work as IDs at the prompt. (Thanks to derwin.)

• The importer now ignores certain “clutter” files like .AppleDouble directories and ._* files. The list of
ignored patterns is configurable via the ignore setting; see Configuration.

• The database now keeps track of files’ modification times so that, during an update, unmodified files can be
skipped. (Thanks to Jos van der Til.)

• The album art fetcher now uses albumart.org as a fallback when the Amazon art downloader fails.

• A new timeout config value avoids database locking errors on slow systems.

• Fix a crash after using the “as Tracks” option during import.

• Fix a Unicode error when tagging items with missing titles.

• Fix a crash when the state file (~/.beetsstate) became emptied or corrupted.

1.6.43 1.0b10 (September 22, 2011)

This version of beets focuses on making it easier to manage your metadata after you’ve imported it. A bumper
crop of new commands has been added: a manual tag editor (modify), a tool to pick up out-of-band deletions and

170 Chapter 1. Contents

http://acoustid.org/
http://musicbrainz.org/doc/XML_Web_Service/Version_2
https://github.com/alastair/python-musicbrainzngs
https://github.com/alastair/python-musicbrainzngs
http://acoustid.org/
https://github.com/laarmen
https://github.com/KraYmer
https://github.com/Lugoues
http://www.albumart.org/

beets Documentation, Release 1.4.7

modifications (update), and functionality for moving and copying files around (move). Furthermore, the concept
of “re-importing” is new: you can choose to re-run beets’ advanced autotagger on any files you already have in your
library if you change your mind after you finish the initial import.

As a couple of added bonuses, imports can now automatically skip previously-imported directories (with the -i flag)
and there’s an experimental Web interface to beets in a new standard plugin.

• A new beet modify command enables manual, command-line-based modification of music metadata.
Pass it a query along with field=value pairs that specify the changes you want to make.

• A new beet update command updates the database to reflect changes in the on-disk metadata. You can
now use an external program to edit tags on files, remove files and directories, etc., and then run beet update
to make sure your beets library is in sync. This will also rename files to reflect their new metadata.

• A new beet move command can copy or move files into your library directory or to another specified direc-
tory.

• When importing files that are already in the library database, the items are no longer duplicated—instead, the
library is updated to reflect the new metadata. This way, the import command can be transparently used as a
re-import.

• Relatedly, the -L flag to the “import” command makes it take a query as its argument instead of a list of
directories. The matched albums (or items, depending on the -s flag) are then re-imported.

• A new flag -i to the import command runs incremental imports, keeping track of and skipping previously-
imported directories. This has the effect of making repeated import commands pick up only newly-added
directories. The import_incremental config option makes this the default.

• When pruning directories, “clutter” files such as .DS_Store and Thumbs.db are ignored (and removed with
otherwise-empty directories).

• The Web Plugin encapsulates a simple Web-based GUI for beets. The current iteration can browse the library
and play music in browsers that support HTML5 Audio.

• When moving items that are part of an album, the album art implicitly moves too.

• Files are no longer silently overwritten when moving and copying files.

• Handle exceptions thrown when running Mutagen.

• Fix a missing __future__ import in embed art on Python 2.5.

• Fix ID3 and MPEG-4 tag names for the album-artist field.

• Fix Unicode encoding of album artist, album type, and label.

• Fix crash when “copying” an art file that’s already in place.

1.6.44 1.0b9 (July 9, 2011)

This release focuses on a large number of small fixes and improvements that turn beets into a well-oiled, music-
devouring machine. See the full release notes, below, for a plethora of new features.

• Queries can now contain whitespace. Spaces passed as shell arguments are now preserved, so you can use
your shell’s escaping syntax (quotes or backslashes, for instance) to include spaces in queries. For example,
typing‘‘beet ls “the knife”‘‘ or beet ls the\ knife. Read more in Queries.

• Queries can match items from the library by directory. A path: prefix is optional; any query containing
a path separator (/ on POSIX systems) is assumed to be a path query. Running beet ls path/to/music
will show all the music in your library under the specified directory. The Queries reference again has more
details.

• Local album art is now automatically discovered and copied from the imported directories when available.

1.6. Changelog 171

http://www.w3.org/TR/html-markup/audio.html

beets Documentation, Release 1.4.7

• When choosing the “as-is” import album (or doing a non-autotagged import), every album either has an
“album artist” set or is marked as a compilation (Various Artists). The choice is made based on the ho-
mogeneity of the tracks’ artists. This prevents compilations that are imported as-is from being scattered across
many directories after they are imported.

• The release label for albums and tracks is now fetched from !MusicBrainz, written to files, and stored in the
database.

• The “list” command now accepts a -p switch that causes it to show paths instead of titles. This makes the
output of beet ls -p suitable for piping into another command such as xargs.

• Release year and label are now shown in the candidate selection list to help disambiguate different releases of
the same album.

• Prompts in the importer interface are now colorized for easy reading. The default option is always highlighted.

• The importer now provides the option to specify a MusicBrainz ID manually if the built-in searching isn’t
working for a particular album or track.

• $bitrate in path formats is now formatted as a human-readable kbps value instead of as a raw integer.

• The import logger has been improved for “always-on” use. First, it is now possible to specify a log file in
.beetsconfig. Also, logs are now appended rather than overwritten and contain timestamps.

• Album art fetching and plugin events are each now run in separate pipeline stages during imports. This should
bring additional performance when using album art plugins like embedart or beets-lyrics.

• Accents and other Unicode decorators on characters are now treated more fairly by the autotagger. For example,
if you’re missing the acute accent on the “e” in “café”, that change won’t be penalized. This introduces a new
dependency on the unidecode Python module.

• When tagging a track with no title set, the track’s filename is now shown (instead of nothing at all).

• The bitrate of lossless files is now calculated from their file size (rather than being fixed at 0 or reflecting the
uncompressed audio bitrate).

• Fixed a problem where duplicate albums or items imported at the same time would fail to be detected.

• BPD now uses a persistent “virtual filesystem” in order to fake a directory structure. This means that your path
format settings are respected in BPD’s browsing hierarchy. This may come at a performance cost, however. The
virtual filesystem used by BPD is available for reuse by plugins (e.g., the FUSE plugin).

• Singleton imports (beet import -s) can now take individual files as arguments as well as directories.

• Fix Unicode queries given on the command line.

• Fix crasher in quiet singleton imports (import -qs).

• Fix crash when autotagging files with no metadata.

• Fix a rare deadlock when finishing the import pipeline.

• Fix an issue that was causing mpdupdate to run twice for every album.

• Fix a bug that caused release dates/years not to be fetched.

• Fix a crasher when setting MBIDs on MP3s file metadata.

• Fix a “broken pipe” error when piping beets’ standard output.

• A better error message is given when the database file is unopenable.

• Suppress errors due to timeouts and bad responses from MusicBrainz.

• Fix a crash on album queries with item-only field names.

172 Chapter 1. Contents

http://en.wikipedia.org/wiki/xargs
http://pypi.python.org/pypi/Unidecode/0.04.1

beets Documentation, Release 1.4.7

1.6.45 1.0b8 (April 28, 2011)

This release of beets brings two significant new features. First, beets now has first-class support for “singleton” tracks.
Previously, it was only really meant to manage whole albums, but many of us have lots of non-album tracks to keep
track of alongside our collections of albums. So now beets makes it easy to tag, catalog, and manipulate your individual
tracks. Second, beets can now (optionally) embed album art directly into file metadata rather than only storing it in a
“file on the side.” Check out the EmbedArt Plugin for that functionality.

• Better support for singleton (non-album) tracks. Whereas beets previously only really supported full albums,
now it can also keep track of individual, off-album songs. The “singleton” path format can be used to customize
where these tracks are stored. To import singleton tracks, provide the -s switch to the import command or, while
doing a normal full-album import, choose the “as Tracks” (T) option to add singletons to your library. To list
only singleton or only album tracks, use the new singleton: query term: the query singleton:true
matches only singleton tracks; singleton:false matches only album tracks. The lastid plugin has been
extended to support matching individual items as well.

• The importer/autotagger system has been heavily refactored in this release. If anything breaks as a result, please
get in touch or just file a bug.

• Support for album art embedded in files. A new EmbedArt Plugin implements this functionality. Enable the
plugin to automatically embed downloaded album art into your music files’ metadata. The plugin also provides
the “embedart” and “extractart” commands for moving image files in and out of metadata. See the wiki for more
details. (Thanks, daenney!)

• The “distance” number, which quantifies how different an album’s current and proposed metadata are, is now
displayed as “similarity” instead. This should be less noisy and confusing; you’ll now see 99.5% instead of
0.00489323.

• A new “timid mode” in the importer asks the user every time, even when it makes a match with very high
confidence. The -t flag on the command line and the import_timid config option control this mode.
(Thanks to mdecker on GitHub!)

• The multithreaded importer should now abort (either by selecting aBort or by typing ^C) much more quickly.
Previously, it would try to get a lot of work done before quitting; now it gives up as soon as it can.

• Added a new plugin event, album_imported, which is called every time an album is added to the library.
(Thanks, Lugoues!)

• A new plugin method, register_listener, is an imperative alternative to the @listen decorator (Thanks
again, Lugoues!)

• In path formats, $albumartist now falls back to $artist (as well as the other way around).

• The importer now prints “(unknown album)” when no tags are present.

• When autotagging, “and” is considered equal to “&”.

• Fix some crashes when deleting files that don’t exist.

• Fix adding individual tracks in BPD.

• Fix crash when ~/.beetsconfig does not exist.

1.6.46 1.0b7 (April 5, 2011)

Beta 7’s focus is on better support for “various artists” releases. These albums can be treated differently via the new
[paths] config section and the autotagger is better at handling them. It also includes a number of oft-requested
improvements to the beet command-line tool, including several new configuration options and the ability to clean up
empty directory subtrees.

1.6. Changelog 173

beets Documentation, Release 1.4.7

• “Various artists” releases are handled much more gracefully. The autotagger now sets the comp flag on albums
whenever the album is identified as a “various artists” release by !MusicBrainz. Also, there is now a distinction
between the “album artist” and the “track artist”, the latter of which is never “Various Artists” or other such
bogus stand-in. (Thanks to Jonathan for the bulk of the implementation work on this feature!)

• The directory hierarchy can now be customized based on release type. In particular, the path_format
setting in .beetsconfig has been replaced with a new [paths] section, which allows you to specify different
path formats for normal and “compilation” (various artists) releases as well as for each album type (see below).
The default path formats have been changed to use $albumartist instead of $artist.

• A new ‘‘albumtype‘‘ field reflects the release type as specified by MusicBrainz.

• When deleting files, beets now appropriately “prunes” the directory tree—empty directories are automatically
cleaned up. (Thanks to wlof on GitHub for this!)

• The tagger’s output now always shows the album directory that is currently being tagged. This should help in
situations where files’ current tags are missing or useless.

• The logging option (-l) to the import command now logs duplicate albums.

• A new import_resume configuration option can be used to disable the importer’s resuming feature or force
it to resume without asking. This option may be either yes, no, or ask, with the obvious meanings. The -p
and -P command-line flags override this setting and correspond to the “yes” and “no” settings.

• Resuming is automatically disabled when the importer is in quiet (-q) mode. Progress is still saved, however,
and the -p flag (above) can be used to force resuming.

• The BEETSCONFIG environment variable can now be used to specify the location of the config file that is at
~/.beetsconfig by default.

• A new import_quiet_fallback config option specifies what should happen in quiet mode when there is
no strong recommendation. The options are skip (the default) and “asis”.

• When importing with the “delete” option and importing files that are already at their destination, files could be
deleted (leaving zero copies afterward). This is fixed.

• The version command now lists all the loaded plugins.

• A new plugin, called info, just prints out audio file metadata.

• Fix a bug where some files would be erroneously interpreted as MPEG-4 audio.

• Fix permission bits applied to album art files.

• Fix malformed !MusicBrainz queries caused by null characters.

• Fix a bug with old versions of the Monkey’s Audio format.

• Fix a crash on broken symbolic links.

• Retry in more cases when !MusicBrainz servers are slow/overloaded.

• The old “albumify” plugin for upgrading databases was removed.

1.6.47 1.0b6 (January 20, 2011)

This version consists primarily of bug fixes and other small improvements. It’s in preparation for a more feature-ful
release in beta 7. The most important issue involves correct ordering of autotagged albums.

• Quiet import: a new “-q” command line switch for the import command suppresses all prompts for input; it
pessimistically skips all albums that the importer is not completely confident about.

174 Chapter 1. Contents

http://wiki.musicbrainz.org/ReleaseType

beets Documentation, Release 1.4.7

• Added support for the WavPack and Musepack formats. Unfortunately, due to a limitation in the Mutagen
library (used by beets for metadata manipulation), Musepack SV8 is not yet supported. Here’s the upstream bug
in question.

• BPD now uses a pure-Python socket library and no longer requires eventlet/greenlet (the latter of which is a C
extension). For the curious, the socket library in question is called Bluelet.

• Non-autotagged imports are now resumable (just like autotagged imports).

• Fix a terrible and long-standing bug where track orderings were never applied. This manifested when the
tagger appeared to be applying a reasonable ordering to the tracks but, later, the database reflects a completely
wrong association of track names to files. The order applied was always just alphabetical by filename, which is
frequently but not always what you want.

• We now use Windows’ “long filename” support. This API is fairly tricky, though, so some instability may still
be present—please file a bug if you run into pathname weirdness on Windows. Also, filenames on Windows
now never end in spaces.

• Fix crash in lastid when the artist name is not available.

• Fixed a spurious crash when LANG or a related environment variable is set to an invalid value (such as 'UTF-8'
on some installations of Mac OS X).

• Fixed an error when trying to copy a file that is already at its destination.

• When copying read-only files, the importer now tries to make the copy writable. (Previously, this would just
crash the import.)

• Fixed an UnboundLocalError when no matches are found during autotag.

• Fixed a Unicode encoding error when entering special characters into the “manual search” prompt.

• Added ‘‘ beet version‘‘ command that just shows the current release version.

1.6.48 1.0b5 (September 28, 2010)

This version of beets focuses on increasing the accuracy of the autotagger. The main addition is an included plugin that
uses acoustic fingerprinting to match based on the audio content (rather than existing metadata). Additional heuristics
were also added to the metadata-based tagger as well that should make it more reliable. This release also greatly
expands the capabilities of beets’ plugin API. A host of other little features and fixes are also rolled into this release.

• The lastid plugin adds Last.fm acoustic fingerprinting support to the autotagger. Similar to the PUIDs
used by !MusicBrainz Picard, this system allows beets to recognize files that don’t have any metadata at all.
You’ll need to install some dependencies for this plugin to work.

• To support the above, there’s also a new system for extending the autotagger via plugins. Plugins can currently
add components to the track and album distance functions as well as augment the MusicBrainz search. The new
API is documented at Plugins.

• String comparisons in the autotagger have been augmented to act more intuitively. Previously, if your album
had the title “Something (EP)” and it was officially called “Something”, then beets would think this was a
fairly significant change. It now checks for and appropriately reweights certain parts of each string. As another
example, the title “The Great Album” is considered equal to “Great Album, The”.

• New event system for plugins (thanks, Jeff!). Plugins can now get callbacks from beets when certain events
occur in the core. Again, the API is documented in Plugins.

• The BPD plugin is now disabled by default. This greatly simplifies installation of the beets core, which is now
100% pure Python. To use BPD, though, you’ll need to set plugins: bpd in your .beetsconfig.

• The import command can now remove original files when it copies items into your library. (This might be
useful if you’re low on disk space.) Set the import_delete option in your .beetsconfig to yes.

1.6. Changelog 175

https://github.com/quodlibet/mutagen/issues/7
https://github.com/sampsyo/bluelet

beets Documentation, Release 1.4.7

• Importing without autotagging (beet import -A) now prints out album names as it imports them to indicate
progress.

• The new MPDUpdate Plugin will automatically update your MPD server’s index whenever your beets library
changes.

• Efficiency tweak should reduce the number of !MusicBrainz queries per autotagged album.

• A new -v command line switch enables debugging output.

• Fixed bug that completely broke non-autotagged imports (import -A).

• Fixed bug that logged the wrong paths when using import -l.

• Fixed autotagging for the creatively-named band !!!.

• Fixed normalization of relative paths.

• Fixed escaping of / characters in paths on Windows.

1.6.49 1.0b4 (August 9, 2010)

This thrilling new release of beets focuses on making the tagger more usable in a variety of ways. First and foremost,
it should now be much faster: the tagger now uses a multithreaded algorithm by default (although, because the new
tagger is experimental, a single-threaded version is still available via a config option). Second, the tagger output now
uses a little bit of ANSI terminal coloring to make changes stand out. This way, it should be faster to decide what to
do with a proposed match: the more red you see, the worse the match is. Finally, the tagger can be safely interrupted
(paused) and restarted later at the same point. Just enter b for aBort at any prompt to stop the tagging process and save
its progress. (The progress-saving also works in the unthinkable event that beets crashes while tagging.)

Among the under-the-hood changes in 1.0b4 is a major change to the way beets handles paths (filenames). This should
make the whole system more tolerant to special characters in filenames, but it may break things (especially databases
created with older versions of beets). As always, let me know if you run into weird problems with this release.

Finally, this release’s setup.py should install a beet.exe startup stub for Windows users. This should make
running beets much easier: just type beet if you have your PATH environment variable set up correctly. The Getting
Started guide has some tips on installing beets on Windows.

Here’s the detailed list of changes:

• Parallel tagger. The autotagger has been reimplemented to use multiple threads. This means that it can con-
currently read files from disk, talk to the user, communicate with MusicBrainz, and write data back to disk. Not
only does this make the tagger much faster because independent work may be performed in parallel, but it makes
the tagging process much more pleasant for large imports. The user can let albums queue up in the background
while making a decision rather than waiting for beets between each question it asks. The parallel tagger is on
by default but a sequential (single- threaded) version is still available by setting the threaded config value to
no (because the parallel version is still quite experimental).

• Colorized tagger output. The autotagger interface now makes it a little easier to see what’s going on at a glance
by highlighting changes with terminal colors. This feature is on by default, but you can turn it off by setting
color to no in your .beetsconfig (if, for example, your terminal doesn’t understand colors and garbles
the output).

• Pause and resume imports. The import command now keeps track of its progress, so if you’re interrupted
(beets crashes, you abort the process, an alien devours your motherboard, etc.), beets will try to resume from
the point where you left off. The next time you run import on the same directory, it will ask if you want to
resume. It accomplishes this by “fast-forwarding” through the albums in the directory until it encounters the last
one it saw. (This means it might fail if that album can’t be found.) Also, you can now abort the tagging process
by entering b (for aBort) at any of the prompts.

176 Chapter 1. Contents

http://musicbrainz.org/artist/f26c72d3-e52c-467b-b651-679c73d8e1a7.html

beets Documentation, Release 1.4.7

• Overhauled methods for handling fileystem paths to allow filenames that have badly encoded special char-
acters. These changes are pretty fragile, so please report any bugs involving UnicodeError or SQLite
ProgrammingError messages in this version.

• The destination paths (the library directory structure) now respect album-level metadata. This means that if you
have an album in which two tracks have different album-level attributes (like year, for instance), they will still
wind up in the same directory together. (There’s currently not a very smart method for picking the “correct”
album-level metadata, but we’ll fix that later.)

• Fixed a bug where the CLI would fail completely if the LANG environment variable was not set.

• Fixed removal of albums (beet remove -a): previously, the album record would stay around although the
items were deleted.

• The setup script now makes a beet.exe startup stub on Windows; Windows users can now just type beet at
the prompt to run beets.

• Fixed an occasional bug where Mutagen would complain that a tag was already present.

• Fixed a bug with reading invalid integers from ID3 tags.

• The tagger should now be a little more reluctant to reorder tracks that already have indices.

1.6.50 1.0b3 (July 22, 2010)

This release features two major additions to the autotagger’s functionality: album art fetching and MusicBrainz ID
tags. It also contains some important under-the-hood improvements: a new plugin architecture is introduced and the
database schema is extended with explicit support for albums.

This release has one major backwards-incompatibility. Because of the new way beets handles albums in the library,
databases created with an old version of beets might have trouble with operations that deal with albums (like the -a
switch to beet list and beet remove, as well as the file browser for BPD). To “upgrade” an old database, you
can use the included albumify plugin (see the fourth bullet point below).

• Album art. The tagger now, by default, downloads album art from Amazon that is referenced in the Mu-
sicBrainz database. It places the album art alongside the audio files in a file called (for example) cover.jpg.
The import_art config option controls this behavior, as do the -r and -R options to the import command.
You can set the name (minus extension) of the album art file with the art_filename config option. (See
Configuration for more information about how to configure the album art downloader.)

• Support for MusicBrainz ID tags. The autotagger now keeps track of the MusicBrainz track, album, and artist
IDs it matched for each file. It also looks for album IDs in new files it’s importing and uses those to look up
data in MusicBrainz. Furthermore, track IDs are used as a component of the tagger’s distance metric now. (This
obviously lays the groundwork for a utility that can update tags if the MB database changes, but that’s for the
future.) Tangentially, this change required the database code to support a lightweight form of migrations so
that new columns could be added to old databases–this is a delicate feature, so it would be very wise to make a
backup of your database before upgrading to this version.

• Plugin architecture. Add-on modules can now add new commands to the beets command-line interface. The
bpd and dadd commands were removed from the beets core and turned into plugins; BPD is loaded by default.
To load the non-default plugins, use the config options plugins (a space-separated list of plugin names) and
pluginpath (a colon-separated list of directories to search beyond sys.path). Plugins are just Python mod-
ules under the beetsplug namespace package containing subclasses of beets.plugins.BeetsPlugin.
See the beetsplug directory for examples or Plugins for instructions.

• As a consequence of adding album art, the database was significantly refactored to keep track of some infor-
mation at an album (rather than item) granularity. Databases created with earlier versions of beets should work
fine, but they won’t have any “albums” in them–they’ll just be a bag of items. This means that commands

1.6. Changelog 177

https://github.com/google-code-export/beets/issues/69
https://github.com/google-code-export/beets/issues/69
https://github.com/beetbox/beets/tree/master/beetsplug

beets Documentation, Release 1.4.7

like beet ls -a and beet rm -a won’t match anything. To “upgrade” your database, you can use the in-
cluded albumify plugin. Running beets albumifywith the plugin activated (set plugins=albumify
in your config file) will group all your items into albums, making beets behave more or less as it did before.

• Fixed some bugs with encoding paths on Windows. Also, : is now replaced with - in path names (instead of _)
for readability.

• MediaFile``s now have a ``format attribute, so you can use $format in your library path for-
mat strings like $artist - $album ($format) to get directories with names like Paul Simon -
Graceland (FLAC).

Beets also now has its first third-party plugin: beetfs, by Martin Eve! It exposes your music in a FUSE filesystem
using a custom directory structure. Even cooler: it lets you keep your files intact on-disk while correcting their tags
when accessed through FUSE. Check it out!

1.6.51 1.0b2 (July 7, 2010)

This release focuses on high-priority fixes and conspicuously missing features. Highlights include support for two
new audio formats (Monkey’s Audio and Ogg Vorbis) and an option to log untaggable albums during import.

• Support for Ogg Vorbis and Monkey’s Audio files and their tags. (This support should be considered prelim-
inary: I haven’t tested it heavily because I don’t use either of these formats regularly.)

• An option to the beet import command for logging albums that are untaggable (i.e., are skipped or taken
“as-is”). Use beet import -l LOGFILE PATHS. The log format is very simple: it’s just a status (either
“skip” or “asis”) followed by the path to the album in question. The idea is that you can tag a large collection
and automatically keep track of the albums that weren’t found in MusicBrainz so you can come back and look
at them later.

• Fixed a UnicodeEncodeError on terminals that don’t (or don’t claim to) support UTF-8.

• Importing without autotagging (beet import -A) is now faster and doesn’t print out a bunch of whitespace.
It also lets you specify single files on the command line (rather than just directories).

• Fixed importer crash when attempting to read a corrupt file.

• Reorganized code for CLI in preparation for adding pluggable subcommands. Also removed dependency on the
aging cmdln module in favor of a hand-rolled solution.

1.6.52 1.0b1 (June 17, 2010)

Initial release.

178 Chapter 1. Contents

https://github.com/jbaiter/beetfs
http://gist.github.com/462717

Index

Symbols
__init__() (beets.mediafile.MediaField method), 122
__init__() (beets.mediafile.MediaFile method), 121

A
add() (beets.dbcore.Model method), 118
add() (beets.library.Library method), 117
add_album() (beets.library.Library method), 117
add_media_field() (beets.plugins.BeetsPlugin method),

113
Album (class in beets.library), 120
albums() (beets.library.Library method), 116
all_keys() (beets.dbcore.Model class method), 118
art_destination() (beets.library.Album method), 120

C
clear() (beets.library.Item method), 119
clear_dirty() (beets.dbcore.Model method), 118
copy() (beets.dbcore.Model method), 118
current_mtime() (beets.library.Item method), 119

D
delete() (beets.mediafile.StorageStyle method), 122
deserialize() (beets.mediafile.StorageStyle method), 122
destination() (beets.library.Item method), 119

E
evaluate_template() (beets.dbcore.Model method), 118

F
fetch() (beets.mediafile.StorageStyle method), 122
fields() (beets.mediafile.MediaFile class method), 121
formats (beets.mediafile.StorageStyle attribute), 122
formatted() (beets.dbcore.Model method), 118
from_path() (beets.library.Item class method), 119

G
get() (beets.dbcore.Model method), 118
get() (beets.mediafile.StorageStyle method), 122

get_album() (beets.library.Item method), 119
get_album() (beets.library.Library method), 117
get_item() (beets.library.Library method), 116

I
Item (class in beets.library), 119
item_dir() (beets.library.Album method), 120
item_keys (beets.library.Album attribute), 120
items() (beets.dbcore.Model method), 118
items() (beets.library.Album method), 120
items() (beets.library.Library method), 116

K
keys() (beets.dbcore.Model method), 118

L
Library (class in beets.library), 116
load() (beets.dbcore.Model method), 118

M
MediaField (class in beets.mediafile), 122
MediaFile (class in beets.mediafile), 121
Model (class in beets.dbcore), 117
move() (beets.library.Album method), 120
move() (beets.library.Item method), 119
move_art() (beets.library.Album method), 121
move_file() (beets.library.Item method), 119
mutate() (beets.dbcore.db.Transaction method), 117

Q
query() (beets.dbcore.db.Transaction method), 117

R
read() (beets.library.Item method), 119
readable_fields() (beets.mediafile.MediaFile class

method), 121
remove() (beets.dbcore.Model method), 118
remove() (beets.library.Album method), 121
remove() (beets.library.Item method), 119

179

beets Documentation, Release 1.4.7

S
save() (beets.mediafile.MediaFile method), 121
script() (beets.dbcore.db.Transaction method), 117
serialize() (beets.mediafile.StorageStyle method), 122
set() (beets.mediafile.StorageStyle method), 122
set_art() (beets.library.Album method), 121
set_parse() (beets.dbcore.Model method), 118
StorageStyle (class in beets.mediafile), 122
store() (beets.dbcore.Model method), 118
store() (beets.library.Album method), 121
store() (beets.mediafile.StorageStyle method), 122

T
Transaction (class in beets.dbcore.db), 117
transaction() (beets.library.Library method), 117
try_filesize() (beets.library.Item method), 120
try_sync() (beets.library.Album method), 121
try_sync() (beets.library.Item method), 120
try_write() (beets.library.Item method), 120

U
update() (beets.dbcore.Model method), 118
update() (beets.library.Item method), 120
update() (beets.mediafile.MediaFile method), 121

W
write() (beets.library.Item method), 120

180 Index

	Contents
	Guides
	Reference
	Plugins
	FAQ
	For Developers
	Changelog

